
Association for Computing Machinery
2 Penn Plaza, Suite 701
New York, NY 10121-0701

Volume XXXII Number 1 April 2012

Table of Contents

Newsletter Information
From the Editor’s Desk 3
Editorial Policy 4
Key Contacts 6

Updated MPHF Weights for Ada 2012 - John A. Trono 9

TLM Request Response Channel in SystemAda - Negin Mahani 13

Ada Gems

Gem #88: GPS - Smart Completion (Part 1 of 2) - Quentin Ochem 19

Gem #89: Code Archetypes for Real-Time Programming - Part 1 - Marco Panunzio 22

Gem #90: The Distributed Systems Annex, Part 4 - DSA and C - Thomas Quinot 27

Gem #91: Smart Completion (Part 2 of 2) - Quentin Ochem 30

Gem #92: Code Archetypes for Real-Time Programming - Part 2 - Marco Panunzio 32

Gem #93: High Performance Multi-core Programming - Part 1 - Pat Rogers 37

Gem #94: Code Archetypes for Real-Time Programming - Part 3 - Marco Panunzio 39

Gem #95: Dynamic Stack Analysis in GNAT - Quentin Ochem 46

High Integrity Language Technology - SIGAda 2012 Conference Advance Program 49

A Publication of SIGAda,
the ACM Special Interest Group on Ada

To subscribe to the ACM Digital Library, contact ACM Member Services:

Phone: 1.800.342.6626 (U.S. and Canada)
+1.212.626.0500 (Global)

Fax: +1.212.944.1318
Hours: 8:30 a.m.-4:30 p.m., Eastern Time

Email: acmhelp@acm.org
Mail: ACM Member Services

General Post Office
PO Box 30777
New York, NY 10087-0777 USA

ACM Professional Members can
add the ACM Digital Library for
only $99 (USD). Student Portal
Package membership includes
the Digital Library. Institutional,
Corporate, and Consortia
Packages are also available.

The Ultimate Online
INFORMATION TECHNOLOGY

Resource!

AD10

www.acm.org/dl

ACM Digital Library

Powerful and vast in scope, the AACCMM DDiiggiittaall LLiibbrraarryy is
the ultimate online resource offering unlimited access and value!

The AACCMM DDiiggiittaall LLiibbrraarryy interface includes:

• TThhee AACCMM DDiiggiittaall LLiibbrraarryy offers over 45 publications
including all ACM journals, magazines, and conference proceed-
ings, plus vast archives, representing over two million pages of
text. The ACM DL includes full-text articles from all ACM publi-
cations dating back to the 1950s, as well as third-party content
with selected archives. www.acm.org/dl

• TThhee GGuuiiddee ttoo CCoommppuuttiinngg LLiitteerraattuurree offers an
 enormous bank of more than one million bibliographic citations
extending far beyond ACM’s proprietary literature, covering all
types of works in computing such as journals, proceedings, books,
technical reports, and theses! www.acm.org/guide

• TThhee OOnnlliinnee CCoommppuuttiinngg RReevviieewwss SSeerrvviiccee
includes reviews by computing experts, providing timely com-
mentary and critiques of the most essential books and articles.

Available only to ACM Members.
Join ACM online at wwwwww..aaccmm..oorrgg//jjooiinnaaccmm

Advancing Computing as a Science & Profession

SIGADA & ACM
join today!

www.acm.orgwww.acm.org/sigada
The ACM Special Interest Group on Ada Programming Language (SIGAda) provides a forum on all aspects of the Ada language and tech-
nologies, including usage, education, standardization, design methods, and compiler implementation. Among the topics that SIGAda addresses
are software engineering practice, real-time applications, high-integrity & safety-critical systems, object-oriented technology, software educa-
tion, and large-scale system development. SIGAda explores these issues through an annual international conference, special-purpose Working
Groups, active local chapters, and its Ada Letters publication.

The Association for Computing Machinery (ACM) is an educational and scientific computing society which works to advance computing as a
science and a profession. Benefits include subscriptions to Communications of the ACM, MemberNet, TechNews and CareerNews, full and unlimited
access to thousands of online courses and books, discounts on conferences and the option to subscribe to the ACM Digital Library.

� SIGAda (ACM Member). $ 25

� SIGAda (ACM Student Member & Non-ACM Student Member). $ 10

� SIGAda (Non-ACM Member). $ 25

� ACM Professional Membership ($99) & SIGAda ($25) . $124

� ACM Professional Membership ($99) & SIGAda ($25) & ACM Digital Library ($99) . $223

� ACM Student Membership ($19) & SIGAda ($10) . $ 29

� Ada Letters only . $ 53

� Expedited Air for Communications of the ACM (outside N. America) . $ 56

payment information

Mailing List Restriction
ACM occasionally makes its mailing list available to computer-related
organizations, educational institutions and sister societies. All email
addresses remain strictly conFdential. Check one of the following if
you wish to restrict the use of your name:

� ACM announcements only
� ACM and other sister society announcements
� ACM subscription and renewal notices only SIGAPP

Questions? Contact:
ACM Headquarters

2 Penn Plaza, Suite 701
New York, NY 10121-0701

voice: 212-626-0500
fax: 212-944-1318

email: acmhelp@acm.org

Remit to:
ACM

General Post O'ce
P.O. Box 30777

New York, NY 10087-0777

www.acm.org/joinsigs
Advancing Computing as a Science & Profession

Name __

ACM Member # __

Mailing Address __

City/State/Province _______________________________________

ZIP/Postal Code/Country___________________________________

Email ___

Mobile Phone___

Fax __

Credit Card Type: � AMEX � VISA � MC

Credit Card # __

Exp. Date ___

Signature___

Make check or money order payable to ACM, Inc

ACM accepts U.S. dollars or equivalent in foreign currency. Prices include
surface delivery charge. Expedited Air Service, which is a partial air freight
delivery service, is available outside North America. Contact ACM for
more information.

Volume XXXII Number 1, April 2012

Table of Contents

Newsletter Information

From the Editor’s Desk 3
Editorial Policy 4
Key Contacts 6

Updated MPHF Weights for Ada 2012 - John A. Trono 9
TLM Request Response Channel in SystemAda - Negin Mahani 13

Ada Gems
Gem #88: GPS - Smart Completion (Part 1 of 2) by Quentin Ochem 19
Gem #89: Code Archetypes for Real-Time Programming - Part 1 by Marco Panunzio 22
Gem #90: The Distributed Systems Annex, Part 4 - DSA and C by Thomas Quinot 27
Gem #91: Smart Completion (Part 2 of 2) by Quentin Ochem 30
Gem #92: Code Archetypes for Real-Time Programming - Part 2 by Marco Panunzio 32
Gem #93: High Performance Multi-core Programming - Part 1 by Pat Rogers 37
Gem #94: Code Archetypes for Real-Time Programming - Part 3 by Marco Panunzio 39
Gem #95: Dynamic Stack Analysis in GNAT by Quentin Ochem 46

High Integrity Language Technology - SIGAda 2012 Conference Advance Program 49

A Publication of SIGAda,
the ACM Special Interest Group on Ada

Ada Letters, April 2012 1 Volume XXXII, Number 1

CHAIR
Ricky E. Sward, The MITRE Corporation, 1155 Academy Park Loop Colorado Springs, CO 80910 USA
Phone: +1 (719) 572-8263, RSward@Mitre.org

VICE-CHAIR FOR MEETINGS AND CONFERENCES
Alok Srivastava, TASC Inc., 475 School Street SW, Washington, DC 20024-2711 USA
Phone: +1 (202) 314-1419, Alok.Srivastava@TASC.Com

VICE-CHAIR FOR LIAISON
Greg Gicca, AdaCore, 1849 Briland Street, Tarpon Springs, FL 34689, USA
Phone: +1 (646) 375-0734, Gicca@AdaCore.Com

SECRETARY
Clyde Roby, Institute for Defense Analyses, 4850 Mark Center Drive, Alexandria, VA 22311 USA
Phone: +1 (703) 845-6666, Roby@ida.org

TREASURER
Geoff Smith, Lightfleet Corporation, PO Box 6256, Aloha, OR 97007, USA
Phone: +1 (360) 816-2821, GSmith@Lightfleet.Com

INTERNATIONAL REPRESENTATIVE
Dirk Craeynest, c/o K U Leuven, Dept. of Computer Science, Celestijnenlaan 200-A, B-3001 Leuven (Heverlee)
Belgium, Dirk.Craeynest@cs.kuleuven.be

PAST CHAIR
John W. McCormick, Computer Science Department, University of Northern Iowa, Cedar Falls, IA 50614, USA
Phone: +1 (319) 273-6056, McCormick@cs.uni.edu

ACM PROGRAM COORDINATOR SUPPORTING SIGAda
Irene Frawley, 2 Penn Plaza, Suite 701, New York, NY 10121-0701
Phone: +1 (212) 626-0605, Frawley@ACM.Org

For advertising information contact:
Advertising Department
2 Penn Plaza, Suite 701, New York, NY 10121-0701
Phone: (212) 869-7440; Fax (212) 869-0481

Is your organization recognized as an Ada supporter? Become a SIGAda INSTITUTIONAL SPONSOR! Benefits
include having your organization's name and address listed in every issue of Ada Letters, two subscriptions to Ada
Letters and member conference rates for all of your employees attending SIGAda events. To sign up, contact Rachael
Barish, ACM Headquarters, 2 Penn Plaza, Suite 701, New York, NY 10121-0701, and email:
MEETING@ACM.ORG, Phone: 212-626-0603.

Interested in reaching the Ada market? Please contact Jennifer Booher at Worldata (561) 393-8200 Ext. 131, email:
platimer@worldata.com. Please make sure to ask for more information on ACM membership mailing lists and labels.

Ada Letters (ISSN 1094-3641) is published three times a year by the Association for Computing Machinery, 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA. The basic annual subscription price is $20.00 for ACM members.

POSTMASTER: Send change of address to Ada Letters:
ACM, 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA

Notice to Past Authors of ACM-Published Articles
ACM intends to create a complete electronic archive of all articles and/or other material previously published by
ACM. If you have written a work that has been previously published by ACM in any journal or conference
proceedings prior to 1978, or any SIG Newsletter at any time, and you do NOT want this work to appear in the ACM
Digital Library, please inform permissions@acm.org, stating the title of the work, the author(s), and where and when
published.

Ada Letters, April 2012 2 Volume XXXII, Number 1

From the Editor’s Desk
Alok Srivastava

Welcome to this issue of ACM Ada Letters. In this issue you will find two very interesting papers,
Updated MPHF Weights for Ada 2012 by John A. Trono and TLM Request Response Channel in
SystemAda by Negin Mahani. A MPHF was created by John Trono for the 72 reserved words in Ada
2005, however, with the addition of a 73rd reserved word (“some”), the table size must be incremented,
and new weights need to be determined. Author Negin Mahani has reiterated that Ada because of its
intrinsic concurrency and object orientation is a good candidate to model hardware at transaction level
modeling or TLM. In this paper she has implemented Request Response channel (TLM_Req_Res) as another
basic channel of TLM based on their previously delimited TLM_FIFO channel.

The issue also provides details on AdaCore compiled Ada Gems:
� GPS - Smart Completion (Part 1 of 2) by Quentin Ochem
� Code Archetypes for Real-Time Programming - Part 1 by Marco Panunzio
� The Distributed Systems Annex, Part 4 - DSA and C by Thomas Quinot
� Smart Completion (Part 2 of 2) by Quentin Ochem
� Code Archetypes for Real-Time Programming - Part 2 by Marco Panunzio
� High Performance Multi-core Programming - Part 1 by Pat Rogers
� Code Archetypes for Real-Time Programming - Part 3 by Marco Panunzio
� Dynamic Stack Analysis in GNAT by Quentin Ochem

In this issue you will find the advance program of High-Integrity Language Technology SIGAda 2012
conference to be held from December 2-6, 2012 in Boston USA. Another major Ada event, the 18th
International Conference on Reliable Software Technologies - Ada-Europe 2013 will take place in 2013
in Berlin, Germany, from June 10 to 14, 2013.

Ada Letters is a great place to submit articles of your experiences with the language revision, tips on
usage of the new language features, as well as to describe success stories using Ada. We’ll look forward
to your submission. You can submit either a MS Word or Adobe PDF file (with 1” margins and no page
numbers) to our technical editor:

Pat Rogers, Ph.D.
AdaCore, 207 Charleston, Friendswood, TX 77546 (USA)
+1 281 648 3165, rogers@adacore.com

We look forward to hearing from you!

Alok Srivastava, Ph.D.
Technical Fellow, TASC Inc.
475 School St, SW; Washington, DC 20024 (USA)
+1 202 314 1419 Alok.Srivastava@TASC.Com

Ada Letters, April 2012 3 Volume XXXII, Number 1

Editorial Policy (from Alok Srivastava, Managing Editor)

As the editor of Ada Letters, I’d like to thank you for your continued support of ACM SIGAda,
and encourage you to submit articles for publication. In addition, if there is some way we can
make Ada Letters more useful to you, please let me know. Note that Ada Letters is now on the
web! See http://www.acm.org/sigada/ada_letters/index.html. The two newest issues are
available only to SIGAda members. Older issues beginning March 2000 are available to all.

Now that Ada is standing on its own merits without the support of the DoD, lots of people and
organizations have stepped up to provide new tools, mechanisms for compiler
validation/assessment, and standards (especially ASIS). The Ada 2005 language version is
fulfilling the market demand of robust safety and security elements and thereby generating a new
enthusiasm into the software development. Ada Letters is a venue for you to share your
successes and ideas with others in the Ada community. Be sure to take advantage of it so that we
can all benefit from each other’s learning and experience.

As some of the other ACM Special Interest Group periodicals have moved, Ada
Letters also transitioned from quarterly to a tri-annual publication. With exception of special
issues, Ada Letters now is going to be published three times a year, with the exception of special
issues. The revised schedules and submission deadlines are as follows:

Deadline Issue Deadline Issue
June 1st, 12 August, 2012 October 1st, 12 December, 2012
February 1st, 13 April, 2013 June 1st, 13 August, 2013

Please send your article to Dr. Pat Rogers at rogers@adacore.com

Guidelines for Authors
Letters, announcements and book reviews should be sent directly to the Managing Editor and
will normally appear in the next corresponding issue.

Proposed articles are to be submitted to the Technical Editor. Any article will be considered for
publication, provided that topic is of interest to the SIGAda membership. Previously published
articles are welcome, provided the previous publisher or copyright holder grants permission. In
particular, keeping with the theme of recent SIGAda conferences, we are interested in
submissions that demonstrate that “Ada Works.” For example, a description of how Ada helped
you with a particular project or a description of how to solve a task in Ada are suitable.

Although Ada Letters is not a refereed publication, acceptance is subject to the review and
discretion of the Technical Editor. In order to appear in a particular issue, articles must be
submitted far enough in advance of the deadline to allow for review/edit cycles. Backlogs may
result in an article's being delayed for two or more issues. Contact the Managing Editor for
information on the current publishing queue.

Articles should be submitted electronically in one of the following formats: MS Word (preferred)
Postscript, or Adobe Acrobat. All submissions must be formatted for US Letter paper (8.5” x
11”) with one inch margins on each side (for a total print area of 6.5” x 9”) with no page

Ada Letters, April 2012 4 Volume XXXII, Number 1

numbers, headers or footers. Full justification of text is preferred, with proportional font
(preferably Times New Roman, or equivalent) of no less than 10 points. Code insertions should
be presented in a non-proportional font such as Courier.

The title should be centered, followed by author information (also centered). The author's name,
organization name and address, telephone number, and e-mail address should be given. For
previously published articles, please give an introductory statement (in a distinctive font) or a
footnote on the first page identifying the previous publication. ACM is improving member
services by creating an electronic library of all of its publications. Read the following for how
this affects your submissions.

Notice to Contributing Authors to SIG Newsletters:
By submitting your article for distribution in this Special Interest Group publication, you hereby
grant to ACM the following non-exclusive, perpetual, worldwide rights:

� to publish in print on condition of acceptance by the editor
� to digitize and post your article in the electronic version of this publication
� to include the article in the ACM Digital Library
� to allow users to copy and distribute the article for noncommercial, educational or

research purposes

However, as a contributing author, you retain copyright to your article and ACM will make
every effort to refer requests for commercial use directly to you.

Notice to Past Authors of ACM-Published Articles
ACM intends to create a complete electronic archive of all articles and/or other material
previously published by ACM. If you have a work that has been previously published by ACM
in any journal or conference proceedings prior to 1978, or any SIG Newsletter at any time, and
you do NOT want this work to appear in the ACM Digital Library, please inform
permissions@acm.org, stating the title of the work, the author(s), and where and when published.

Back Issues
Back issues of Ada Letters can be ordered at the price of $6.00 per issue for ACM or SIGAda
members; and $9.00 per issue for non-ACM members. Information on availability, contact the
ACM Order Department at 1-800-342-6626 or 410-528-4261. Checks and credit cards only are
accepted and payment must be enclosed with the order. Specify volume and issue number as well
as date of publication. Orders must be sent to:

ACM Order Department, P.O. Box 12114, Church Street Station, New York, NY 10257 or via
FAX: 301-528-8550.

Ada Letters, April 2012 5 Volume XXXII, Number 1

KEY CONTACTS

Technical Editor
Send your book reviews, letters, and articles to:

Pat Rogers
AdaCore
207 Charleston
Friendswood, TX 77546
+1-281-648 3165
Email: rogers@adacore.com

Managing Editor
Send announcements and short notices to:

Alok Srivastava
TASC Inc.
475 School Street, SW
Washington DC 20024
+1-202-314-1419
Email: Alok.Srivastava@TASC.Com

Advertising
Send advertisements to:

William Kooney
Advertising/Sales Account Executive
2 Penn Plaza, Suite 701
New York, NY 10121-0701
Phone: +1-212-869-7440
Fax: +1-212-869-0481

Local SIGAda Matters
Send Local SIGAda related matters to:

Greg Gicca
AdaCore
1849 Briland Street
Tarpon Springs, FL 34689, USA
Phone: +1-646-375-0734
Fax: +1-727-944-5197
Email: Gicca@AdaCore.Com

Ada CASE and Design Language Developers
Matrix
Send ADL and CASE product Info to:

Judy Kerner
The Aerospace Corporation
Mail Stop M8/117
P.O. Box 92957
Los Angeles, CA 90009
+1-310-336-3131
Email: kerner@aero.org

Ada Around the World
Send Foreign Ada organization info to:

Dirk Craeynest
c/o K.U.Leuven, Dept. of Computer Science,
Celestijnenlaan 200-A, B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be

Reusable Software Components
Send info on reusable software to:

Trudy Levine
Computer Science Department
Fairleigh Dickinson University
Teaneck, NJ 07666
+1-201-692-2000
Email: levine@fdu.edu

Ada Letters, April 2012 6 Volume XXXII, Number 1

SIGAda Working Group (WG) Chairs
See http://www.acm.org/sigada/ for most up-to-date information

Ada Application Programming Interfaces WG
Geoff Smith
Lightfleet Corporation
4800 NW Camas Meadows Drive
Camas, WA 98607
Phone: +1-503-816-1983
Fax: +1-360-816-5750
Email: gsmith@lightfleet.com

Ada Semantic Interface Specification WG
http://www.acm.org/sigada/wg/asiswg/asiswg.html
Bill Thomas
The MITRE Corp
7515 Colshire Drive
McLean, VA 22102-7508
Phone: +1-703-983-6159
Fax: +1-703-983-1339
Email: BThomas@MITRE.Org

Education WG
http://www.sigada.org/wg/eduwg/eduwg.html
Mike Feldman
420 N.W. 11th Ave., #915
Portland, OR 97209-2970
Email: MFeldman@seas.gwu.edu

Standards WG
Robert Dewar

 73 5th Ave.
 New York, NY 10003
 Phone: +1-212-741-0957
 Fax: +1-232-242-3722

Email: dewar@cs.nyu.edu

Ada Letters, April 2012 7 Volume XXXII, Number 1

Ada Around the World
(National Ada Organizations)

From: http://www.ada-europe.org/members.html

Ada-Europe
Tullio Vardanega
University of Padua
Department of Pure and Applied
Mathematics
Via Trieste 63
I-35121, Padova, Italy
Phone: +39-049-827-1359
Fax: +39-049-827-1444
E-mail: tullio.vardanega@math.unipd.it
http://www.ada-europe.org/

Ada-Belgium
Dirk Craeynest
C/o K.U.Leuven, Dept. of Computer
Science, Celestijnenlaan 200-A, B-3001
Leuven (Heverlee), Belgium
Phone: +32-2-725 40 25
Fax : +32-2-725 40 12
E-mail: Dirk.Craeynest@cs.kuleuven.be
http://www.cs.kuleuven.be/~dirk/ada-
belgium/

Ada in Denmark
Jørgen Bundgaard
E-mail: Info at Ada-DK.org
http://www.Ada-DK.org/

Ada-Deutschland
Peter Dencker, Steinackerstr. 25
D-76275 Ettlingen-Spessartt, Germany
E-mail: dencker@parasoft.de
http://www.ada-deutschland.de/

Ada-France
Association Ada-France
c/o Jérôme Hugues
Département Informatique et Réseau
École Nationale Supérieure des
Télécommunications, 46, rue Barrault
75634 Paris Cedex 135, France
E-mail: bureau@ada-france.org
http://www.ada-france.org/

Ada Spain
J. Javier Gutiérrez
P.O. Box 50.403
E-28080 Madrid, Spain
Phone: +34-942-201394
Fax : +34-942-201402
E-mail: gutierjj@unican.es
http://www.adaspain.org/

Ada in Sweden
Rei Stråhle
Box Saab Systems
S:t Olofsgatan 9A
SE-753 21 Uppsala, Sweden
Phone: +46-73-437-7124
Fax : +46-85-808-7260
E-mail: Rei.Strahle@saabgroup.com
http://www.ada-i-sverige.se/

Ada in Switzerland
Ahlan Marriott
White Elephant GmbH
Postfach 327
CH-8450 Andelfingen, Switzerland
Phone: +41 52 624 2939
Fax : +41 52 624 2334
E-mail: ada@white-elephant.ch
http://www.ada-switzerland.org/

Italy
Contact: tullio.vardanega@math.unipd.it

Ada-Europe Secretariat
e-mail: secretariat@ada-europe.org

Ada Letters, April 2012 8 Volume XXXII, Number 1

Updated MPHF Weights for Ada 2012

John A. Trono
Saint Michael's College

One Winooski Park
Colchester, VT 05439

jtrono@smcvt.edu

Introduction

A minimal perfect hashing function (MPHF) allows software to directly verify set membership,
in one array access, without any concern for collisions during this table lookup operation. A
MPHF was created by this author for the 72 reserved words in Ada 2005 [3]; however, with the
addition of a 73rd reserved word (“some”), the table size must be incremented, and new weights
need to be determined. This brief essay revisits the MPHF creation process, and outlines how
those techniques [3] were reused as much as possible to shorten the time to derive a new MPFH.

Updating Process

One basic structure for a traditional MPHF was published by Cichelli [1], but as explained in [3],
this had to be modified to what appears just below that assignment – for several reasons.

h(word) = weights[1st letter in word] + weights[last letter in word] + length(word); //traditional

h(word) = (weights1[word[107 mod length(word)]] + weights2[word[108 mod length(word)]] 1+
 length(word)) mod 72;

First, this is a relatively large number of reserved words, but even so, it is possible to
accommodate similar sets with the traditional equation. Unfortunately, two five letter reserved
words in Ada (“raise” and “range”) would always generate collisions in the traditional approach.
Therefore, the introduction of two, distinct arrays, i.e. weights1[] and weights2[], was deemed
necessary [3] to prevent such collisions, and given this updated strategy, two indices into the
reserved words still needed to be discovered before appropriate weights could be determined.
Secondly, with “accept” and “access” both beginning with the same first four letters, a lengthy
process was undertaken to select two indices (107 and 108 – modulus the length of the reserved
words) for the hybrid MPFH [3]. Lastly, a “mod tableSize” operation was added to ease the
search for said weights without significantly decreasing the strategy’s performance.

When determining these weights by hand [3], the most popular letters, in both selected positions
within the reserved words, were assigned weights that attempted to distribute the reserved words
(that have those popular letters in those selected positions) throughout the entire table. With
weights1[], the letters {‘t’, ‘n’, ‘d’, ‘e’, ‘s’} were assigned the values {0, 14, 28, 42, 56}, and {3,
18, 32, 51, 68} were assigned to {‘a’, ‘t’, ‘i’, ‘r’, ‘e’} with respect to weights2[]. Unfortunately,
these weights produced a few collisions, but by decrementing the value for weights2[‘t’], those

1 This notation assumes word is a character array that is accessed from [0] to
[length-1], even though array indices in Ada begin with 1.

Ada Letters, April 2012 9 Volume XXXII, Number 1

were resolved. For the remaining, unplaced reserved words, active counts were deduced, and
letters were assigned weights in decreasing order of collision likelihood until only the 16 letters
that appear only once in the selected positions (referred to as wildcards) remained.

When assigning values to the wildcards, five reserved words were placed into the same table
position as with the MPHF for Ada 2005, and overall, nineteen reserved words are linked with
the same hash value as with the previous hash table [3]. In fact, 23 weights are identical, since
that was one guideline followed when completing this weight assignment problem because it
seemed reasonable that reusing the previous weights could make adding the new reserved word
(“some”) to the table much easier than starting from scratch. (As it turns out, it was easier by
roughly a factor of five, and, twelve more weights were only +/- one, or two, for similar reasons.)

The original version of the Ada code below appears in [2], and it has been modified here to
include the new weights. The original version was roughly three times faster than a similar binary
search operation [3], and this version performs the searches just as quickly. Ironically, because
108 is evenly divisible by 2, 3, 4, 6, 9, and 12, reserved words of those lengths select the last and
first letter – the opposite order of the Cichelli MPFH – in 47 of the 73 table entries.

Number_Of_Reserved_Words : constant := 73;

subtype Index_Range is Natural range 0 .. Number_Of_Reserved_Words - 1;
subtype Lowercase is Character range 'a' .. 'z';
type Table_Array is array (Lowercase) of Natural;

Table_1 : constant Table_Array :=
 (5, 34, 5, 28, 42, 16, 20, 1, 21, 0, 31, 32, 6,
 14, 13, 12, 3, 13, 56, 0, 0, 9, 34, 0, 0, 0);

Table_2 : constant Table_Array :=
 (3, 0, 27, 17, 68, 7, 27, 0, 32, 0, 43, 17, 5,
 39, 4, 2, 0, 51, 21, 17, 4, 46, 10, 9, 0, 0);

function Hash (Name: in String) return Index_Range is
-- Preconditions : Name contains only lowercase characters
-- Name contains at least one character
begin
 return (Table_1 (Name(107 rem Name'Length + 1)) +
 Table_2 (Name(108 rem Name'Length + 1)) +
 Name'Length) rem Number_Of_Reserved_Words;
end Hash;

Conclusion

A previously constructed minimal perfect hashing function (MPHF) was updated in a fairly
straightforward manner, and that process was summarized here. Since the set of reserved words
in Ada 2012 is only one larger than its predecessor, more than half of the reserved words
remained in the same table positions as before, and only about 25% of them were farther than
four places from their previous locations. Appendices A and B list the updated weights as well as
the new table determined by this updated MPHF.

References

[1] Cichelli, Minimal Perfect Hashing Functions Made Simple, Communications of the ACM,

Ada Letters, April 2012 10 Volume XXXII, Number 1

Volume 23, #1, 1980.
[2] Dale and McCormick, Ada 2005 Plus Data Structures: An Object-Oriented Approach, Jones
and Bartlett, 2nd edition, 2007.
[3] Trono, Optimal Table Lookup for Reserved Words in Ada, Ada Letters, Volume 26, #1, 2006.

Appendix A – weights assigned to letters.

char weights1[char] weights2[char]
a 5 3
b 34 0
c 5 27
d 28 17
e 42 68
f 16 7
g 20 27
h 1 0
i 21 32
j 0 0
k 31 43
l 32 17
m 6 5
n 14 39
o 13 4
p 12 2
q 3 0
r 13 51
s 56 21
t 0 17
u 0 4
v 9 46
w 34 10
x 0 9
y 0 0
z 0 0

Appendix B – Hash table placement for Ada 2012 reserved words.

The third column holds the index and letter selected by (107 mod length of the keyword), where
L denotes the last letter in the keyword and zero the first: k[2nd] denotes the index and second
letter selected; w1[1st] is the value for the letter at k[1st]; and w2[2nd] for k[2nd].

[] keyword k[1st] k[2nd] w1[1st] w2[2nd] length
0 case L-e 0-c 42 27 4
1 private 2-i 3-v 21 46 7
2 null L-l 0-n 32 39 4
3 new L-w 0-n 34 39 3
4 body L-y 0-b 0 0 4
5 at L-t 0-a 0 3 2
6 digits L-s 0-d 56 17 6
7 out L-t 0-o 0 4 3
8 constant 3-s 4-t 56 17 8
9 accept L-t 0-a 0 3 6
10 interface L-e 0-i 42 32 9
11 reverse 2-v 3-e 9 68 7
12 record L-d 0-r 28 51 6
13 pragma L-a 0-p 5 2 6
14 requeue 2-q 3-u 3 4 7
15 with L-h 0-w 1 10 4

Ada Letters, April 2012 11 Volume XXXII, Number 1

16 generic 2-n 3-e 14 68 7
17 is L-s 0-i 56 32 2
18 exception L-n 0-e 14 68 9
19 or L-r 0-o 13 4 2
20 elsif 2-s 3-i 56 32 5
21 array 2-r 3-a 13 3 5
22 of L-f 0-o 16 4 2
23 for L-r 0-f 13 7 3
24 renames 2-n 3-a 14 3 7
25 xor L-r 0-x 13 9 3
26 end L-d 0-e 28 68 3
27 select L-t 0-s 0 21 6
28 when L-n 0-w 14 10 4
29 declare 2-c 3-l 5 17 7
30 function 3-c 4-t 5 17 8
31 aliased 2-i 3-a 21 3 7
32 do L-o 0-d 13 17 2
33 loop L-p 0-l 12 17 4
34 and L-d 0-a 28 3 3
35 then L-n 0-t 14 17 4
36 mod L-d 0-m 28 5 3
37 until 2-t 3-i 0 32 5
38 all L-l 0-a 32 3 3
39 protected L-d 0-p 28 2 9
40 delay 2-l 3-a 32 3 5
41 else L-e 0-e 42 68 4
42 not L-t 0-n 0 39 3
43 while 2-i 3-l 21 17 5
44 goto L-o 0-g 13 27 4
45 limited 2-m 3-i 6 32 7
46 range 2-n 3-g 14 27 5
47 raise 2-i 3-s 21 21 5
48 in L-n 0-i 14 32 2
49 use L-e 0-u 42 4 3
50 if L-f 0-i 16 32 2
51 tagged L-d 0-t 28 17 6
52 task L-k 0-t 31 17 4
53 procedure L-e 0-p 42 2 9
54 delta 2-l 3-t 32 17 5
55 package 2-c 3-k 5 43 7
56 entry 2-t 3-r 0 51 5
57 begin 2-g 3-i 20 32 5
58 subtype 2-b 3-t 34 17 7
59 abstract 3-t 4-r 0 51 8
60 rem L-m 0-r 6 51 3
61 synchronized L-d 0-s 28 21 12
62 abs L-s 0-a 56 3 3
63 type L-e 0-t 42 17 4
64 separate 3-a 4-r 5 51 8
65 access L-s 0-a 56 3 6
66 others L-s 0-o 56 4 6
67 some L-e 0-s 42 21 4
68 terminate L-e 0-t 42 17 9
69 abort 2-o 3-r 13 51 5
70 overriding 7-i 8-n 21 39 10
71 return L-n 0-r 14 51 6
72 exit L-t 0-e 0 68 4

Ada Letters, April 2012 12 Volume XXXII, Number 1

TLM Request Response Channel in SystemAda

Negin Mahani
Zarand High Education Center, Computer Engineering Department, Shahid Bahonar University,

Kerman, Iran
Negin @cad.ece.ut.ac.ir

Abstract
Hardware description languages or HDLs have

started their way from transistor level to transaction
level modeling up to now. Ada because of its
intrinsic concurrency and object orientation is a good
candidate to model hardware at transaction level
modeling or TLM. In our previous papers we have
implemented some special and necessary features of
gate level and also some fundamentals of TLM in
Ada language [1] [2] [3]. In this paper we have
implemented Request Response channel
(TLM_Req_Res) as another basic channel of TLM
based on our TLM_FIFO channel in our last work.
Also we have done some simulation time
comparisons to show that there is no significant
simulation time penalty in SystemAda over SystemC
like our previous implementations.

1 Introduction
Ada is an important programming language. It is

one of the most popular languages in the whole world
that many academic and nonacademic centers use it
because of its unique features .The Ada programming
language has got its strong structures from several
languages. Its detailed evaluation process is unique
among other programming languages.

Its special language features are composed of
packages, exception handling, generic program units,
parallel programming and object orientation. Ada
also supports more flexible libraries, better control
mechanisms for shared data and interfaces.

 This programming language is used in fields like
government (Department of Defense), banking
systems, commercial aviation, communication
systems, computer-aided design and
Manufacturing [4] [5].

Ada is very similar to VHDL in syntax. So it is
interesting for hardware designers. Besides as
mentioned before it has concurrency, object
orientation and interface structures which are not
patchy. These are the exact features that are
necessary for a TLM language.

As you may know the design of hardware has
evolved from Transistor Level to Register Transfer
Level (RTL), and now to Transaction Level. The
inherent concurrency of Ada makes it a good

candidate for describing register transfer level.
Furthermore, its object oriented features along with
inherent mechanisms for concurrency give it
potentials for being used as a language for describing
processing elements and communication channels of
transaction level.

In this paper we follow our work on SystemAda
and try to implement other TLM channels in this
form of Ada language. This paper is organized as
follows. Section 2 will be focus on the characteristic
of Transaction Level Modeling (TLM) and a synopsis
of TLM basic channels, while notable features of our
SystemAda and our new channel implementation
(Request Response channel) will be introduced in
section 3. Next in section 4, simulation time in
SystemAda and SystemC languages will be
compared. Finally, conclusions are drawn in section
5.

2 TLM
Transaction level modeling is the last level of

modeling for describing complex hardware systems
today. In this level there are two basic components
computational and communicational components. It
means that TLM divides a system into computation
parts, i.e. processing elements, and communication
parts, i.e. channels. In this level of hardware
modeling we divide our hardware systems into these
two component types.

Transaction Level Modeling (TLM) enhances
simulation performance of today’s complex digital
systems and also provides the ability of early design
space exploration.

In the first standard of TLM there are some basic
channels that play the role of communicational
components in this level and try to exchange data
between computational components.

Using these components, the level of abstraction is
increased and the details of hardware system
description like internal signals and gates are running
away [7] [8].

2.1 TLM Channels
There are three kind of basic channels in TLM:

TLM_FIFO channel, TLM Request Response
channel and TLM Transport channel. TLM_FIFO

Ada Letters, April 2012 13 Volume XXXII, Number 1

channel is the first channel of TLM that two other
channels described based on it.

In the following there are brief descriptions of the
TLM channels, like TLM_FIFO channel that we have
implemented in our previous works, TLM Request
Response channel that we want to implement here
and also TLM Transport channel that we want to
work on, in near future. Our focus in this paper is on
TLM Request Response channel.

TLM _FIFO is a FIFO channel which is generic in
size and type. It has some special characteristics
which has mentioned in our previous work and also
in section 3.1.1 briefly.

TLM Request Response channel is another
channel in TLM. It composed of two TLM_FIFO
channels. One is used for requests and the other is
used for responses. And TLM Transport channel is a
TLM Request Response channel with size one.
Actually it is composed of two buffers with size one,
one is for input data packets and the other one is for
output data packets [9].

3 SystemAda
In previous researches, we developed packages in

Ada to use this language as a system description
language, like the way SystemC is used for
description of systems. We refer to our form of Ada
usage and its additional packages as SystemAda and
we use a public Ada compiler (GNAT) to evaluate
system descriptions written in Ada. SystemAda is
meant for modeling system behavior and structure at
the transaction level and we consider possible
approaches for extending Ada to meet these
requirements. Previous papers discussed the
specification of our proposed SystemAda, its
hardware description style, its RTL link, Ada
description of Transaction Level Modeling (TLM)
channels, presentation of TLM interfaces concept,
and implementation of more complex models like a
network on chip system in Ada [2] [3].

 A hardware description language at any level in
addition to providing constructs for covering
hardware at that level, it has to provide a minimum
set of constructs for describing hardware at its
immediate next lower level of abstraction. Therefore,
for creating a transaction level hardware language
from Ada, we have to cover some preliminary RTL
level constructs as well. So our last works focus on
TLM, while providing a sufficient link to RTL [1] [2].

 In [3] we have made simulation time
comparisons between TLM_FIFO channel
implemented in SystemAda-TLM and SystemC-
TLM. As a result of these experiments we have
shown that Ada TLM_FIFO channel is faster in
simulation than one written in SystemC.

3.1 Describing TLM Channels using
Ada

Since all of TLM channel structures can be
described based on FIFO, we have started developing
TLM channels from TLM_FIFO channel. All of
these descriptions are based on functionality of the
channel.

3.1.1 TLM_FIFO Channel in SystemAda
TLM_FIFO has been implemented completely and

improved its characteristics in [3]. As it is mentioned
there it has some special characteristics that all are
covered in the Ada implementation version. These
characteristics are as follows:

� Generic package
� Generic type
� Generic size
� Concurrency
� Blocking/non-blocking transport capability
� Export
� Multiple reader/writer
� Multiple instances

TLM_FIFO is implemented by dynamic and static
memory allocation. The code of TLM_FIFO channel
using dynamic memory allocation is depicted in the
following figure (Figure 1). Each of its features and
its static memory allocation form are explained
completely in the previous paper [3].

generic type FIFO_Element is private;
package FIFO is
 Input : FIFO_Element;
 Output: FIFO_Element;
 type FIFO_Node is private;

 ...

 procedure Add_FIFO;

 ...

 private
 type FIFO_Channel is access FIFO_Node;
 type FIFO_Node is record
 Data : FIFO_Element;
 Link : FIFO_Channel;
 end record;
 Head : FIFO_Channel;

 ...

end FIFO;

Figure 1. FIFO package specification using dynamic
memory allocation [3]

Ada Letters, April 2012 14 Volume XXXII, Number 1

3.1.2 TLM_Req_Res Channel in
SystemAda

As mentioned earlier, Request Response channel is
one of the transaction level channels which
conceptually consist of two TLM_FIFOs, one for
requests and the other one for responses.

generic package Req_Res is
 task type Req_Res_Task is
 entry Add_Req;
 entry Add_Res;
 entry Rem_Req;
 entry Rem_Res;
 entry Stop;
 end Req_Res_Task;

 …

 TLM_Req_Res : Req_Res_Task;
end Req_Res;

Figure 2. Req_Res channel package specification

package body Req_Res is
 task body Req_Res_Task is
 begin
 loop
 select
 accept Add_Req do
 Req_FIFO.Input := Req_Input;
 Req_FIFO.TLM_FIFO.Add;
 end Add_Req;
 or
 accept Rem_Req do
 IF (Req_FIFO.Empty_Flag = FALSE)
then
 Req_FIFO.TLM_FIFO.Remove;
 Req_Output := Req_FIFO.Output;
 end IF;
 end Rem_Req;
 or
 accept Add_Res do
 Res_FIFO.Input := Res_Input;
 Res_FIFO.TLM_FIFO.Add;
 end Add_Res;

or
 accept Rem_Res do
 if (Res_FIFO.Empty_Flag = FALSE)
then
 Res_FIFO.TLM_FIFO.Remove;
 Res_Output := Res_FIFO.Output;
 end if;
 end Rem_Res;
 or
 accept Stop;
 Req_FIFO.TLM_FIFO.Stop;
 Res_FIFO.TLM_FIFO.Stop;
 exit;
 end select;
 end loop;
 end Req_Res_Task;
end Req_Res;

Figure 3. Req_Res channel package body

This channel supports both modes for transferring
data, blocking and non-blocking. In blocking mode,
each request is tied to a response and thus the size of
each FIFO is limited to one. Such channel is called
Transport channel which we will work on its
implementation in near future. In non-blocking mode,
however, the request could be gathered in the request
FIFO without paying attention to getting
responses [9].

TLM_Req_Res channel could also be
implemented dynamically using linked list and
statically using two cyclic unconstrained arrays
(circular buffers). Figure 2 shows the specification of
the package which implements Req_Res channel. To
have concurrency in this channel, a task type called
Req_Res_Task has been added to this package. A
variable called TLM-Req_Res has been defined from
this task type to be used later as a communication
channel of this type. This task type has five entries
that their name shows their functionality.

The body of the Req_Res package is shown in
Figure 3. As shown in this figure, selective waiting
has been used in order to model the non-blocking
operation of the channel and or clause appears
between different accept statements. Req_FIFO and
Res_FIFO are FIFOs of type TLM_FIFO and are
used for storing requests and responses respectively.

Figure 4 shows a master-slave architecture using
our Req_Res channel. In this figure, the messages
that Master and Slave modules pass to
TLM_Req_Res channel for communication are
shown.

Figure 4. TLM-Master-Slave architecture using
TLM_Req_Res channel

Ada Letters, April 2012 15 Volume XXXII, Number 1

4 Simulation Result
Ada has some inherent structural advantages over

SystemC. But to observe if Ada has simulation time
penalty, we have done several simulation time
comparisons between Ada and SystemC
implementations of TLM_Req_Res channel.

In order to compare the simulation time of the
TLM channel implemented using SystemC and Ada,
we need an appropriate platform. We have done
several experiments on two platforms. The properties
of the first platform which we have used are as
follows:

� Operating system: Microsoft Windows
XP Professional, 2002 version, Service
pack2
� System: Intel Pentium 4, CPU 2GHz,

RAM 1GB
� Compiler: Gnat GPL 2007 for Ada,

Microsoft Visual Studio (.Net Frame Work
2005) For SystemC

4.1 Ada and SystemC simulation time
comparison for TLM_Req_Res channel in
platform one

For the first set of experiments we have chosen
plat form one. We have done these experiments for
different numbers of packets from 10000 to 50000
packets and we have recorded the simulation time
lengths in Table 1. In this series of experiments we
have used I/O file commands in the programs (i.e. we
read from and write to files. Figure 5 is based on the
data in Table 1.

Table 1: TLM_Req_Res channel average simulation
time in SystemAda and SystemC for variable packet numbers

(using I/O files)

Packet
Number Ada System

C
Simulation
Time Ratio

Optimization
percent

10000 0.9458 2.7014 2.856206 64.98852

20000 1.967 5.1206 2.603254 61.58653

30000 2.882 7.95 2.758501 63.74843

40000 3.7576 10.5926 2.81898 64.52618

50000 4.732 13.075 2.763102 63.8088

Average 2.760009 63.73169

Figure 5. Ada and SystemC TLM_Req_Res channel
simulation time (using I/O files)

Since the difference between SystemAda and
SystemC models is much more than expected
amount, it is concluded that it must be some special
command that is costly in SystemC over SystemAda
compilers. Based on previous experiments on
TLM_FIFO these are I/O file commands. So we omit
these commands and repeat each of the experiments
as before. Table 2 and Figure 6 show the results of
the experiments which have done without I/O file
commands.

Table 2: TLM_Req_Res channel average simulation
time in SystemAda and SystemC for variable packet numbers

(using no I/O files)

Packet
Number Ada System

C
Simulation
Time Ratio

Optimization
percent

10000 0.8348 0.872 1.044562 4.266055

20000 1.6972 1.8062 1.064223 6.034769

30000 2.5244 2.5274 1.001188 0.118699

40000 3.3376 3.8466 1.152505 13.23247

50000 4.2272 4.5034 1.065339 6.133144

Average 1.065563 5.957026

Figure 6. Ada and SystemC TLM_Req_Res channel
simulation time (using no I/O files)

Ada Letters, April 2012 16 Volume XXXII, Number 1

All of the above experiments are done using the
source code with dynamic memory allocation. This
time we repeat the experiments based on static
memory allocation along with no I/O files.

As it is obvious static memory allocation is faster
than dynamic memory allocation and the following
results in Figure 7 based on Table 3 support this fact.

Table 3: TLM_Req_Res channel average simulation
time in SystemAda and SystemC for variable packet numbers

(using static memory allocation)

Packet
Number Ada System

C
Simulation
Time Ratio

Optimizatio
n percent

10000 0.4704 0.872 1.853741 46.05505

20000 0.9144 1.8062 1.975284 49.37438

30000 1.3774 2.5274 1.834906 45.50131

40000 1.8098 3.8466 2.125428 52.95066

50000 2.2892 4.5034 1.967237 49.1673

Average 1.95132 48.60974

Figure 7. Ada and SystemC TLM_Req_Res channel
simulation time (using static memory allocation)

4.2 Ada and SystemC simulation time
comparison for TLM_Req_Res
channel in platform two

The characteristics of the second plat form are as
follow:
� Operating system: Microsoft Windows XP

Professional, 2002 version, Service pack2
� System: Intel Pentium 4, CPU 2GHz, RAM

1GB
� Compiler: Gnat GPL 2007 for Ada, Microsoft

VC++6.0 For SystemC

The obvious difference between the two
introduced platforms is the compilers which are used

for compiling SystemC source codes. We have used
Microsoft Visual Studio (.Net Frame Work 2005) in
the first platform and Microsoft VC++6.0 in the
second platform For SystemC source codes.

The details of the simulations performed are
presented in the following sections by using tables
and charts.

For this set of experiments we have chosen plat
form two. Again we have done these experiments for
different numbers of packets from 10000 to 50000
packets and we have recorded the simulation time
length in Table 4. Figure 8 is based on the data in
Table 4.

Table 4: TLM_Req_Res channel average simulation
time in SystemAda and SystemC for variable packet numbers

(plat form two)

Packet
Number Ada SystemC Simulation

Time Ratio
Optimization

percent

10000 0.398 0.39 0.979899 -2.05128

20000 0.748 0.797 1.065508 6.148055

30000 1.192 1.188 0.996644 -0.3367

40000 1.479 1.469 0.993239 -0.68074

50000 1.789 1.771 0.989939 -1.01637

Average 1.005046 0.412593

Figure 8. Ada and SystemC TLM_Req_Res channel
simulation time (plat form two)

As it is shown in Table 4 and Figure 8
respectively, this time by the change in SystemC
compiler from Microsoft Visual Studio (.Net Frame
Work 2005) in the first platform and Microsoft
VC++6.0 in the second platform there is only 0.4
percent simulation time optimization.

Ada Letters, April 2012 17 Volume XXXII, Number 1

5 Conclusion
In our pervious works we have developed an RTL

package in Ada and we have covered a link to RTL
since every language that wants to cover TLM must
have a link to RTL as well.

Also for proving TLM in Ada we have developed
some basic structures of TLM in Ada like
TLM_FIFO channel and some communicational
interfaces which are unidirectional or bidirectional.
Using this implemented TLM_FIFO channel we have
developed a network on chip architecture to show it’s
applicable at Ada to model some more complex
system.

In this work we have developed TLM Request
Response channel in Ada based on our TLM_FIFO
and we have done some simulation time comparison
between SystemAda and SystemC equivalent models
of TLM_Req_Res channel.

We have done these experiments in different
circumstances like with using I/O files in source
codes or not, using dynamic memory allocation or
static memory allocation and also by a change in
SystemC compilers. In some cases Ada models were
much faster and somewhere else there was not mush
difference. All in all in the worst case there was no
significant simulation time penalty in SystemAda
over SystemC.

In our future work we will implement TLM
Transport channel in our SystemAda and do some
more experiments on simulation time comparison
between SystemAda and SystemC.

6 References
[1] Negin Mahani, Parniyan Mokri, Mahshid

Sedghi, Zainalabedin navabi, “System Ada : An
Ada based Syste- Level Hardware Description
Language” ACM SIGADA AdaLetters, vol.
XXIX , no. 2 , August 2009 , pp. 15-19.

[2] Negin Mahani, “Making Alive Register Transfer
Level and Transaction Level Modeling In
System-Ada”, ACM SIGADA AdaLetters, Acm
SIGAda Ada Letters, 2010, pp. 15-23.

[3] Negin Mahani, “Investigating SystemAda:
TLM_FIFO Detailed Characteristics Proof,
TLM2.0 Interfaces Implementation, Simulation
Time Comparison to SystemC”, ACM SIGADA
AdaLetters, 2012.

[4] Sebesta, Robert T. (1996). “Concepts of
Programming Languages”, Addison-Wesley
Publishing Company, Inc. Menlo Park, Ca.

[5] “Ada Programming Language”, Available at :
http://groups.engin.umd.umich.edu/CIS/course.d
es/cis400/ada/ada.html

[6] J. E. Sammet, “Why Ada is not Just another
Programming Language”, Communications of

the ACM, vol. 29, no. 8, August 1986, pp. 722-
732.

[7] “SystemC TLM1.0 Standard”, Available at:
http://www.systemc.org/home

[8] Stuart Swan, “A Tutorial Introduction to the
SystemC TLM Standard”, Cadence Design
Systems, Inc, March 2006, Available at:
http://www.ti.unituebingen.de/uploads/media/Pre
sentation-13-OSCI_2_swan.pdf

[9] “TLM Modeling Techniques”, Available at:
http://www.ict.kth.se/courses/IL2452/Sept2009/
TLM_modeling_techniques.pdf

Ada Letters, April 2012 18 Volume XXXII, Number 1

Gem #88 GPS - Smart Completion (Part 1 of 2)

Author: Quentin Ochem

Let’s get started…

In this Gem we're going to create a few files using the completion mechanism. All the
semantic information required to provide this computation is done on the fly. In order to
follow along, simply open GPS on any project.

Note that the completion mechanism relies on the ad hoc parser launched at GPS startup.
You can see the progression of the parser on the bottom right corner of the screen.
Completion may not be accurate before the parsing is finished.

Simple completion of components

Create a new file main.adb:

procedure Main is
begin

null;
end Main;

First we'll declare a few types and objects. Create a new record type in the declarative
part, and then a variable of that type, for example:

type Rec is record
 A, B : Integer;
end record;
A_Variable : Rec;

Then, in the sequence of statements, type "A" and hit <control-space>. <control-space> is
the shortcut for manually querying the completion. A popup is opened, showing all
declarations and keywords starting with "A". At this stage, there are just too many of
them, so let's narrow down the list by adding the character "_". The list is now much
shorter. You can select the appropriate completion. A_Variable will be entered in the
text.

<control-space> can be used any time to query a completion. When writing code, the
completion can be triggered in certain cases. Enter a dot ('.') character in the code. The
smart completion popup is automatically triggered, and offers to complete with the
components of Rec, namely A and B.

Ada Letters, April 2012 19 Volume XXXII, Number 1

This information is completely synchronized with the current contents of the editor.
Adding a component, for example C, in the completion view, and then querying the
completion again will show the three components.

Completion of with and use clauses

We're now going to add some with and use clauses to the program. In particular, say we
want to add a dependency on some standard unit that provides mathematical operations.

Write "with" at the top of the main subprogram. Query the completion by entering
<control-space>. All packages that can be "withed" are now listed here. You can narrow
down the list of possibilities by writing, for example, "Ad", and selecting Ada. Add a dot.
The completion mechanism will list all children of the predefined Ada package. You can
select "Numerics". The interesting thing is that we may not know at this stage what's
available in Numerics. Adding another dot will list all the child packages of Numerics.
Scroll down the list. "Elementary_Functions" sounds like what we need. Select it.

Completion of subprogram profiles

Create a new Float variable, such as "X : Float;". We're going to use that variable in a
mathematical computation. Since we still don't really know what's in the
"Elementary_Functions" package, we'll start writing a fully prefixed call. Enter "X :=
Ada.Numerics.Elementary_Functions.". You can now see all the functions listed in the
completion popup. Select, for example, Arctan and enter a left parenthesis. The
completion mechanism will offer to complete with several profiles. The red diamonds
provide complete profile completion with named notation. Select the first one, and give a
value to X and Y.

Completion and OOP

Consider a simple package named "Base":

package Base is
type Root is tagged private;
procedure Prim (V : Root; I1, I2 : Integer);
type Child is new Root with private;
procedure Prim2 (V : Child);

private
type Root is tagged record

 A : Integer;
end record;
type Child is new Root with record

 B : Integer;

Ada Letters, April 2012 20 Volume XXXII, Number 1

end record;
end Base;

In Main, create two variable, V1 and V2 of type Root and Child:

 V1 : Root;
 V2 : Child;

When completing, say, "V1.", the completion mechanism offers prefixed primitives, such
as "Prim". When completing "V2.", the implicitly inherited primitive "Prim" and the
newly declared "Prim2" are offered.

Completion is also sensitive to visibility context. Let's create a body for Base:

package body Base is
procedure Prim (V : Root; I1, I2 : Integer) is
begin

null;
end Prim;
procedure Prim2 (V : Child) is
begin

null;
end Prim2;

end Base;

Try writing "V." in the body of Prim2. You will now have access to all the visible
components of Child, including the fields which are hidden from Main because of the
private part.

Related Source Code

Ada Gems example files are distributed by AdaCore and may be used or modified for any
purpose without restrictions.

Ada Letters, April 2012 21 Volume XXXII, Number 1

Gem #89

Author: Marco Panunzio, University of Padua

Let’s get started…

Introduction In this series of Ada Gems we propose a set of code archetypes for the
development of real-time systems. The code archetypes comply with the restrictions of
the Ravenscar Profile, a subset of the Ada language specifically suited for the
development of high-integrity real-time systems. The Ravenscar Profile was devised to
guarantee that programs written in accordance with it are amenable to static analysis in
the time dimension. In fact, the profile excludes all Ada constructs that are exposed to
nondeterministic or unbounded execution time. In the space dimension, the profile
prohibits the use of constructs that implicitly perform dynamic memory allocation.

As an additional benefit, Ravenscar systems can be implemented on top of real-time
kernels that can be very small in size and fast in time, which are attractive characteristics
for applications that can afford little overhead and must undergo extensive
qualification/certification.

The essential elements of the Ravenscar restrictions are: (i) static existence model. The
system is composed of a fixed set of tasks and protected objects, defined at library level
and with a statically assigned priority or ceiling priority. No task terminates, and abort
statements are disallowed. (ii) communication model. Tasks are only allowed to
communicate asynchronously, via protected objects. Task rendezvous is therefore
disallowed. (iii) deterministic execution model. The profile excludes all constructs that
introduce nondeterminism: relative delays, as they introduce nondeterminism in the
suspension time of tasks; requeue statements; the use of the Ada.Calendar package, as all
time-related operations rely on the high-precision Ada.Real_Time package; protected
objects are restricted to having at most one entry on which only a single task can
enqueue; guards of entries are composed of a simple Boolean condition to avoid side
effects and nondeterminism in the evaluation time.

In this series of Ada Gems we illustrate a set of code archetypes that realize common
programming patterns suited for the development of Ravenscar-compliant real-time
systems. The use of the archetypes permits factorization and thus helps reduce the size of
the code that implements the concurrent elements of the system.

An important additional goal of these archetypes is to achieve complete separation
between the algorithmic/sequential code of the system and the code that manages
concurrency and real-time aspects. This separation of concerns permits developing the
algorithmic contents of the system (that is, the behavior of the system) independently of
the management of tasking and real-time issues.

Ada Letters, April 2012 22 Volume XXXII, Number 1

This goal is achieved by encapsulating the sequential code in a suitable task structure.
The figure above depicts the generic structure of our task archetypes.

The sequential code is enclosed in a structure that we term the Operational Control
Structure (OPCS). The code is executed by a Thread, which represents a distinct flow
of control of the system. The task structure may be optionally equipped with an Object
Control Structure (OBCS). The OBCS represents a synchronization agent for the task:
as we shall see, we use it mainly for sporadic tasks. The OBCS consists of a protected
object that stores incoming requests for services to be executed by the Thread. As
multiple clients may independently require services to be executed by that Thread, the
operations that post execution requests in the OBCS are protected. Upon each release, the
Thread fetches one of those requests (FIFO ordering is the default) and then executes the
sequential code, stored in the OPCS, which corresponds with the request.

As we will illustrate in the third Gem of this series, the operations provided by the OBCS,
which form the provided interface of the overall entity, match the signature of the
sequential operations of the OPCS (Op_A in the figure above). Thanks to that, the callers
need not be aware that they are in fact only posting execution requests in the OBCS,
while the actual execution will be performed by the Thread.

The sequential code embedded in the OPCS may need to invoke services from other
software entities (the operation Op_Z in the figure above). In the fifth Gem of this series
we will describe how those functional needs can be fulfilled.

As a conclusion, our entities encapsulate their internal structure and expose to the
external world just an interface that matches the signature of the operations embedded in
the OPCS. The different concerns dealt with by each such entity are separately allocated
to its internal constituents: the sequential behaviour is handled by the OPCS; tasking and
execution concerns by the Thread; interaction with concurrent clients and handling of
execution requests are handled by the OBCS.

1.1.1 Structure of this Ada Gems Miniseries

1. Introduction and Cyclic Task
2. Simple Sporadic Task
3. Sporadic Task - System Types and Task Types
4. Sporadic Task - Sequential Code and OBCS
5. Intertask Communication

Ada Letters, April 2012 23 Volume XXXII, Number 1

Acknowledgments The task structure we adopt is an evolution of the HRT-HOOD
design methodology [1], from which we also inherit the terms OBCS and OPCS.

Early work on code generation from HRT-HOOD to Ada was described in [2] and [3].

The code archetypes that we describe in this Ada Gems miniseries were used for the code
generation in the HRT-UML track of the EU-funded ASSERT project [4]. In that project,
Matteo Bordin, then at the University of Padua, was the main designer of the code
generation strategy and code archetypes.

Finally we would like to thank Tullio Vardanega for his preliminary review of the
contents of this miniseries, and Matteo Bordin, now with AdaCore, for his extensive
review of the contents and his useful suggestions.

1.1.2 Let’s get started…

1.1.3 Cyclic Task

In this section we illustrate our code archetype for cyclic tasks. It allows the developer to
create a cyclic task by instantiating a generic package, passing the operation that needs to
be executed periodically.

The archetype is quite simple. In fact, we only need to create a task type that cyclically
executes a given operation with a fixed period. The specification element of the archetype
is:

with System; use System;
generic

with procedure Cyclic_Operation;
package Cyclic_Task is

task type Thread_T
 (Thread_Priority : Priority;
 Period : Positive) is

pragma Priority (Thread_Priority);
end Thread_T;

end Cyclic_Task;

Ada Letters, April 2012 24 Volume XXXII, Number 1

The specification above defines the task type for the cyclic thread. Each thread is
instantiated with a statically assigned priority and a period which stays fixed throughout
the whole lifetime of the thread. The task type is created inside a generic package, which
is used to factorize the code archetype and make it generic on the cyclic operation. The
Ada body is specified as follows:

with Ada.Real_Time;
with System_Time;
package body Cyclic_Task is

task body Thread_T is
use Ada.Real_Time;

 Next_Time : Time := System_Time.System_Start_Time;
begin

loop
delay until Next_Time;

 Cyclic_Operation;
 Next_Time := Next_Time + Milliseconds (Period);

end loop;
end Thread_T;

end Cyclic_Task;

The body of the task consists of an infinite loop. Just after activation, the task enters the
loop and is immediately suspended until a system-wide start time (System_Start_Time).
This initial suspension is used to synchronize all the tasks that are to execute in phase and
let them have their first release at the same absolute time. When resuming from the
suspension (which notionally coincides with the release of the task), the task contends for
the processor and executes the Cyclic_Operation specified in the instantiation of its
generic package. Then it calculates the next time it needs to be released (Next_Time) and
as first instruction of the subsequent loop, it issues a request for absolute suspension until
the next multiple of its period.

The code archetype is simple to understand, yet a few comments are in order.

Firstly, we must stress that the use of absolute time and thus of the construct delay until
(as opposed to relative time and the construct delay) is essential to prevent the actual
time of the periodic release from drifting.

Secondly, the reader should note that the Cyclic_Operation is parameterless. That is not
much of a surprise, as it is consistent with the very nature of cyclic operations which are
not requested explicitly by any software client.

Finally, this version of the cyclic task assumes that all tasks are initially released at the
same time (System_Start_Time). Support for a task-specific offset (phase) is easy to
implement: we just need to specify an additional Offset parameter on task instantiation,
which is then added to System_Start_Time to determine the time of the first release of the
task. The periodic release of the task will then assume the desired phase with respect to

Ada Letters, April 2012 25 Volume XXXII, Number 1

the synchronized release of the tasks with no offset. In the next Ada Gem we will
illustrate a simple code archetype to realize sporadic tasks.

References

[1] Alan Burns and Andy J. Wellings: "HRT-HOOD: A Structured Design Method for
Hard Real-Time Ada Systems". Elsevier Science, 1995. ISBN 978-0444821645.

[2] Juan Antonio de la Puente, Alejandro Alonso, and Angel Alvarez: "Mapping HRT-
HOOD Designs to Ada 95 Hierarchical Libraries." Reliable Software Technologies -
Ada-Europe, Springer Volume LNCS 1088, 1996.

[3] Matteo Bordin and Tullio Vardanega: "Automated Model-Based Generation of
Ravenscar-Compliant Source Code". Proceedings of the 17th Euromicro Conference on
Real-Time Systems, IEEE Computer Society, 2005. ISBN 0-7695-2400-1.

[4] ASSERT project (Automated proof-based System and Software Engineering for Real-
Time Systems) http://www.assert-project.net

Related Source Code

Ada Gems example files are distributed by AdaCore and may be used or modified for any
purpose without restrictions.

Ada Letters, April 2012 26 Volume XXXII, Number 1

Gem #90: The Distributed Systems Annex, Part 4 - DSA and C

Author: Thomas Quinot

Let’s get started…

The previous DSA Gems showed how components in a pure Ada application can be
spread across several partitions and use static or dynamic remote calls to interact.
Wouldn't it be nice if other languages such as C could also benefit from these features?

Of course, you can embed C code in an Ada partition just as you would in any
nondistributed application. Your C code can also call back to Ada code (as long as the
Ada subprograms have the C convention). Remote (RCI) subprograms can thus be called
from C. If the call occurs on the partition to which the RCI is assigned, nothing special
happens, this is just a regular call. On other partitions, the compiler-generated calling
stubs are used, and this is a transparent remote call, just as it would be if it occurred in
Ada code: a remote subprogram has nothing special at the call point; all the magic is done
in the generated stubs.

This is all well and good, but you still have to write your complete application in Ada,
and in particular have the main subprogram of each partition declared in the GNATDIST
configuration file.

What if you would like to incorporate DSA client or server code in an existing C
application? This can be achieved by combining the DSA with GNAT's stand-alone
libraries, a feature allowing an Ada partition to generate a loadable module rather than a
full-fledged executable image. Here's how...

1.1.4 Rebuild PolyORB with -fPIC

The "-fPIC" switch instructs the compiler to generate so-called Position Independent
Code, that is, code that can be dynamically loaded as a shared library.

In order to have a DSA partition in a stand-alone library, you need to set CFLAGS="-O2
-g -fPIC" in your environment when calling the PolyORB configure script. (The resulting
PolyORB build can also be used for normal applications.)

1.1.5 Build your Ada partitions as usual, also with -fPIC

Let's assume for example that your application has a server partition that is fully written
in Ada, and a client partition meant for embedding in a C/C++ application as a shared
object. The server partition will be built using:

Ada Letters, April 2012 27 Volume XXXII, Number 1

po_gnatdist -fPIC xxxx.cfg server_partition

1.1.6 Create a dummy main subprogram for the client side

You need to provide a dummy main subprogram for the client partition. You should
make this a null library subprogram that has WITH clauses for any package (including
RCIs) that you want to reference from the C side.

Also, it may be convenient to include in this closure an "Exports" package containing
suitable subprogram declarations for those routines that you want to call from C, with C-
compatible argument types, and using pragma Export to give them friendly C names.
(Note that this is not specific to the Distributed Systems Annex: such an interface
package is typically created any time you need to call Ada code from C code.)

with RCI_1;
...
with RCI_n;
with Exports;
procedure Client is
begin

null;
end Client;

1.1.7 Build the client library

This is the crucial point. To build a partition as a stand-alone library instead of a regular
executable, special arguments are passed to GNATDIST:

po_gnatdist -fPIC -g xxxx.cfg client_partition \
 -bargs rci_1.ali ... rci_n.ali polyorb-dsa_p-partitions.ali \
 -shared -LClientName \
 -largs -shared

In this command line, you need to list the ALI files for all RCI packages referenced in
your client partition (rci_1.ali .. rci_n.ali), and also the one for the internal RCI polyorb-
dsa_p-partitions.ali.

You can replace the name "ClientName" with an arbitrary prefix of your choosing (it is
used for some automatically generated symbols, see below).

This will generate a file client_partition, which you can rename to client_partition.so.

Ada Letters, April 2012 28 Volume XXXII, Number 1

1.1.8 Call client library from C code

Once you have your loadable object generated, you can load it from C code using the
standard dlopen(3) function.

Symbols from the library can then be obtained using the dlsym(3) function. You first
need to retrieve the symbols ClientNameinit and ClientNamefinal from the library.

ClientNameinit corresponds to the elaboration of all Ada units in the library, and should
be called once upon module load. This starts the Ada PCS and connects to the DSA name
server to retrieve the initial location of RCI units.

ClientNamefinal corresponds to the finalization, and should be called once, just before
unloading the module or terminating the application (ClientName here is the prefix you
passed on the GNATDIST command line above).

Finally, you can retrieve and call the symbols for RCI subprograms, or any subprogram
exported by your Ada units, and call them as though they were normal C routines.

Related Source Code

Ada Gems example files are distributed by AdaCore and may be used or modified for any
purpose without restrictions.

Ada Letters, April 2012 29 Volume XXXII, Number 1

Gem #91: Smart Completion (Part 2 of 2)

Author: Quentin Ochem

Let’s get started…

In this Gem, we're going to fill in additional parts of the Ada source files created in Part 1
of this series on using GPS's smart completion mechanism. All the semantic information
required to provide this computation is done on the fly. Note that the features described in
this Gem are not yet available, and will be released as a part of the GPS version following
4.4.0. GNAT Pro supported customers can request early access to a GPS version with
these capabilities.

The completion mechanism relies on a parser launched at GPS startup. The progress of
the parser will appear on the bottom right corner of the GPS window. Be aware that
completion may not be accurate before the parsing is finished.

Completion of aggregates

GPS can automatically complete qualified aggregates. Instead of writing a series of
assignments to individual components of a variable, let's try automatically initializing the
value as a whole. Type "A_Variable := Rec'(". The left parenthesis is an automatic
trigger for the completion mechanism. The first entry offers the choice of filling in all the
fields for that record in a named aggregate -- only the component values need to be
provided by the user. Other entries offer the choice of adding a new name in the list of
values for the aggregate.

Completion of pragmas and attributes

Let's say we want to add an assertion before a call to Arctan, checking that the argument
is greater than or equal to zero.

Just before the statement containing the call, type "pragma". The smart completion
feature will be triggered automatically. The list of all available pragmas is shown, with
their associated documentation. Scroll down to Assert. You now have access to the
documentation for the Assert pragma. Press enter once you've finished viewing the
documentation, and complete it, for example: "pragma Assert (X >= 0)".

Attributes can be listed the same way. For example, by typing X', smart completion is
triggered, and all available attributes are listed.

Completion of generic entities

Let's consider an instance of an Ada container in our application. Start with a simple
main subprogram:

Ada Letters, April 2012 30 Volume XXXII, Number 1

with Ada.Containers.Doubly_Linked_Lists;
use Ada.Containers;
package Main is

type Rec is record
 A, B, C : Integer;

end record;
begin

null;
end Main;

Then, in the declarations, enter: "package R_List is new Doubly_Linked_Lists (".
Smart completion is triggered, and you can complete the formal part. Let's just choose
Element_Type here, and provide Rec as the actual parameter. Add a use clause on that
package. You should now have:

package R_List is new Ada.Containers.Doubly_Linked_Lists (Element_Type
=> Rec);
use R_List;

Declare a variable of that list kind, such as "L : R_List.List;". Then in the sequence
of statements, after the begin, add a few elements, for instance "L.Append (Rec'(0, 0,
0));". Then try to access the first element. Type "L.First_Element.". The completion
feature understands the generic instantiation and offers to complete the selected name
with one of the three fields, A, B, or C.

This completes our small tutorial on using the GPS smart completion capability. As
mentioned, the features presented in this Part 2 Gem will be available in the upcoming
release of GPS (version 5.0.0).

Related Source Code

Ada Gems example files are distributed by AdaCore and may be used or modified for any
purpose without restrictions.

Ada Letters, April 2012 31 Volume XXXII, Number 1

Gem #92: Code Archetypes for Real-Time Programming - Part 2

Author: Marco Panunzio, University of Padua

Let’s get started…

In the previous Gem in this series we introduced the key concepts underlying our code
archetypes and described the simplest of our archetypes, which realizes a cyclic task. In
this Gem we show how to realize an equally simple sporadic task. In the next Gem in this
series, we will depart from this level of simplicity to realize a complete archetype that
overcomes some of the limitations intrinsic in these initial solutions.

Simple sporadic task

A sporadic task is a task such that any two subsequent activations of it are always
separated by no less than a minimum guaranteed time span. This minimum separation is
typically called minimum inter-arrival time (MIAT). In this initial archetype, the task
executes a single operation at each activation, and it does so in response to a request
issued by an external client.

Much like the cyclic task, our sporadic task is composed of: (i) a protected object, shared
with the outside world, that external clients invoke to post their requests for execution. In
the previous Gem we termed this resource an OBCS; and (ii) a thread of control that
waits for incoming requests, fetches the first of them from the protected object and
executes the sporadic operation that corresponds to a specific operation as provided by
the OPCS.

The task structure whose code we are about to show is sketched in the figure below.

Fortunately, the Ada language is well equipped to realize that structure, and we
implement that in our archetype using a protected object under the Ceiling_Locking
policy for (i) and a task type for (ii).

For the moment, we illustrate a base version of the archetype for a sporadic task. In the
explanation we also illustrate some of its limitations that will not be present in a more
complex version of the archetype.

Ada Letters, April 2012 32 Volume XXXII, Number 1

The specification for the simple sporadic task follows:

with System;
generic

with procedure Sporadic_Operation;
 Ceiling : System.Priority;
 OBCS_Size : Integer;
package Simple_Sporadic_Task is

procedure Put_Request;
task type Thread_T

 (Thread_Priority : System.Priority; Interval : Integer)
is

pragma Priority (Thread_Priority);
end Thread_T;

end Simple_Sporadic_Task;

The specification defines (as for the Cyclic task that we presented in the previous Gem) a
task type inside a generic package. When instantiating the package we specify the
sporadic operation for the task, the Ceiling Priority for the OBCS protected object, and
the size of the queue of requests of the OBCS.

Additionally, we create the procedure Put_Request, that is used by clients to post a
request to the sporadic task.

The body for the package is instead:

with System_Time;
with System_Types;
with Ada.Real_Time;
package body Simple_Sporadic_Task is
 Protocol : System_Types.Simple_Sporadic_OBCS (Ceiling, OBCS_Size);

procedure Put_Request is
begin

 Protocol.Put_Request;
end Put_Request;
task body Thread_T is

use Ada.Real_Time;
 Next_Time : Time := System_Time.System_Start_Time +
 System_Time.Task_Activation_Delay;
 MIAT : Time_Span := Milliseconds (Interval);
 Release : Time;

begin
loop

delay until Next_Time;

Ada Letters, April 2012 33 Volume XXXII, Number 1

 Protocol.Get_Request (Release);
 Next_Time := Release + MIAT;
 Sporadic_Operation;

end loop;
end Thread_T;

end Simple_Sporadic_Task;

Comparing this body to the body of the cyclic task, two major differences appear: (i) the
presence of an OBCS; and (ii) a slightly modified loop structure.

As in the cyclic task, the sporadic task enters its infinite loop and suspends itself until the
system-wide start time. After that: (i) it calls the entry Get_Request(Time) of the OBCS;
(ii) after the execution of the entry (from which, as we show later on, it obtains a
timestamp of when release actually occurred), the task executes the Sporadic_Operation
(single, for now) specified at the instantiation of its generic package; (iii) it calculates the
next earliest time of release (Next_Time) so as to respect the minimum separation
between subsequent activations. Therefore, on the next iteration of the loop the task
issues a request for absolute suspension until that time, and thus it won't probe the OBCS
for execution requests until the required minimum separation has elapsed.

As a final note, when the procedure Put_Request is called, it just performs a simple
indirection to an OBCS procedure with the same name. To appreciate that, we must take
a look at the OBCS, which acts as the synchronization agent for the task.

The specification of the OBCS is as follows:

with System;
with Ada.Real_Time; use Ada.Real_Time;
package System_Types is

protected type Simple_Sporadic_OBCS (C : System.Priority; Size :
Integer) is

pragma Priority(C);
procedure Put_Request;
entry Get_Request (Release_Time : out Time);

private
 Max_Pending : Integer := Size;
 START_Pending : Integer := 0;
 Barrier : Boolean := False;

end Simple_Sporadic_OBCS;
end System_Types;

The OBCS declares a procedure Put_Request that is used to post requests in its queue,
and a guarded entry Get_Request(Time) that is used by the thread to fetch the requests. In
the private part of the declaration, the Max_Pending attribute is used to set the maximum
number of pending requests that the OBCS can hold (obviously no greater than its size);
the START_Pending attribute indicates the actual number of pending requests; finally the
Boolean Barrier is used to control the guard of Get_Request(Time).

Ada Letters, April 2012 34 Volume XXXII, Number 1

package body System_Types is
protected body Simple_Sporadic_OBCS is

procedure Update_Barrier is
begin

 Barrier := Start_Pending > 0;
end Update_Barrier;
procedure Put_Request is
begin

if Start_Pending < Max_Pending then
 Start_Pending := Start_Pending + 1;

end if;
 Update_Barrier;

end Put_Request;
entry Get_Request (Release_Time : out Time) when Barrier is
begin

 Release_Time := Ada.Real_Time.Clock;
 Start_Pending := Start_Pending - 1;
 Update_Barrier;

end Get_Request;
end Simple_Sporadic_OBCS;

end System_Types;

The body of the OBCS is quite easy to understand. When the procedure Put_Request is
called, the number of pending requests (START_Pending) is increased unless the
maximum number has already been reached. In that case the new request is just silently
ignored.

The entry Get_Request(Time) is used by the task to probe the OBCS for pending
requests. In the case where there are requests, the Barrier guard is open and the task: (i)
saves the time stamp of the execution of the entry (which notionally coincides with the
release of the task), that is later used to calculate the next release time; and (ii) decreases
the number of pending requests.

At the end of Put_Request and Get_Request, the value of the Barrier guard is refreshed
using Update_Barrier. In the event that there are no more pending requests, Barrier is set
to false. For this reason, if the guard is closed when the task calls the entry, the call is
blocked until a new request is posted.

The check for the request queue to be not empty is not directly used as the guard
expression for the entry, so as to comply with the restriction of the Ravenscar Profile that
requires guards to be simple Boolean conditions, and thus have deterministic evaluation.
The OBCS has a single entry, as the profile requires, and the only task that can be
enqueued on it is the task to which the OBCS belongs, thus ensuring full compliance with
the Ravenscar Profile.

Ada Letters, April 2012 35 Volume XXXII, Number 1

While the proposed structure achieves our goal of creating a sporadic task, we
immediately notice two potential drawbacks: the Sporadic_Operation is parameterless,
and the synchronization protocol is very, perhaps too, simple to capture real-life system
needs.

For what concerns the first issue, clients of the sporadic task simply trigger new releases
of the task, but cannot, for example, pass data to the task as parameters of the release
request. Creating a nontrivial producer-consumer collaboration pattern with this task
structure is impossible because the consumer task (our sporadic task) cannot receive any
data to process.

For what concerns instead the OBCS, in this version it is a simple counter of pending
requests.

In the next Gems in this series, we will illustrate how to support sporadic operations with
parameters and start to realize more complex queuing policies for execution requests.

Related Source Code

Ada Gems example files are distributed by AdaCore and may be used or modified for any
purpose without restrictions.

Ada Letters, April 2012 36 Volume XXXII, Number 1

Gem #93: High Performance Multi-core Programming - Part 1

Author: Pat Rogers

Let’s get started…

Chameneos-Redux is part of the Computer Language Shootout, a suite of benchmarks
that compares the implementations of various programming languages across different
kinds of applications and platforms. The program is required to perform a specified
number of rendezvous between mythical "chameneos" creatures, where each creature is
represented by a distinct thread. Each rendezvous is symmetric, in that the participating
creatures can be either the caller or the called member of any given encounter.

Although both single-core and multi-core machines are used in the benchmarks, we focus
only on the multi-core versions with our Ada implementation. The multi-core benchmark
results for all implementations are available here: Chameneos-Redux.

As you will see on that web page, there are several implementations. (All
implementations are supplied by volunteers, written against common requirements.) The
fastest implementations are currently written in GNU C, GNU C++, SBCL Lisp, and
GNAT Ada. After those, the other implementations, also written in C, Java, C++, Ada,
and numerous other languages, are considerably slower. On the author's development
machine, the C++ and Ada implementations have essentially the same performance
results, with a slight advantage for C++, but on the official benchmark machine our Ada
version is noticeably slower than the C++ version. The discrepancy is under
investigation. The overall results occasionally fluctuate too, due presumably to
unexpected perturbations in the benchmarking platform, such that the top-ranked versions
can move up or down a little relative to each other.

The reason the other implementations are considerably slower is that they do not use the
same fundamental design. That fact is our first point to be made about performance:
design trumps tuning. When it comes to performance, no amount of tweaking can
compensate for an inherently slow design. For example, an earlier Ada implementation
(supplied by another volunteer) used an asynchronous select statement. In addition to the
difficulties in using this statement correctly, the semantics are such that it is inherently
expensive, and would be so in any programming language. Worse yet, the asynchronous
select statement was the "else part" of a selective accept statement for a rendezvous, all
within a loop. Effectively the program was polling in the most expensive manner
imaginable. Worst of all, this code was in the worst possible place – the code
implementing the primary behavior of the threads. As a vehicle for displaying Ada
constructs the design was impressive, but as a demonstration for performance it was not
competitive.

In contrast, the three fastest designs (including the current Ada implementation) all use a
shared variable for this most critical aspect of the implementation. The shared variable is
accessed using a specific machine instruction that locks the memory bus and then

Ada Letters, April 2012 37 Volume XXXII, Number 1

atomically reads and updates the value. By packing both the number of rendezvous
completed and the identities of the creatures awaiting rendezvous into a single shared
word, this single-instruction approach provides an extremely fast method of updating
program state and passing data among the threads.

The machine instruction is a "compare-and-swap" (CAS) instruction that can be accessed
as a GCC compiler "built-in". It can also be accessed by writing the machine-code
insertion directly, but the built-in is more convenient. To import it into an Ada program,
one declares the subprogram and then uses pragma Import for the completion as usual,
but with a convention of "intrinsic" because it is an instruction sequence issued directly
by the compiler.

function Sync_Val_Compare_And_Swap_32
 (Destination : access Unsigned_32;
 Comparand : Unsigned_32;
 New_Value : Unsigned_32)

return Unsigned_32;
pragma Import (Intrinsic, Sync_Val_Compare_And_Swap_32,
"__sync_val_compare_and_swap_4");

The declaration for the built-in is that of a function, because the value prior to the swap is
returned. Specifically, the CAS built-in compares Comparand to Destination.all, and if
they have the same value, writes New_Value into Destination.all. The caller can then
check the value returned to see whether the update actually took place, as well as using
that value for other purposes. (There is also a version that returns a Boolean value
indicating whether the swap occurred, instead of returning the prior value.)

The other requirement for importing an intrinsic built-in is to deal with overloading.
There are several forms of the CAS instruction, depending on the size of the data in
question, resulting in overloaded versions of the built-in. GNAT currently does not
automatically resolve overloaded intrinsic operations, so the External_Name parameter to
pragma Import must identify which version is intended. A suffix is appended to the name
for this purpose. In the declaration above, we are using 32-bit quantities, so we specify
the name as shown, in which the suffix "_4" indicates the number of bytes to manipulate
and thus the version of the built-in desired.

In a future Gem we will explore additional steps used to increase performance, including
a user-defined allocator that ensures all allocations are cache-aligned, tuning by
specifying adherence to language restrictions, and assigning threads to cores so that
threads execute with maximum performance.

Related Source Code

Ada Gems example files are distributed by AdaCore and may be used or modified for any
purpose without restrictions.

Ada Letters, April 2012 38 Volume XXXII, Number 1

Gem #94: Code Archetypes for Real-Time Programming - Part 3

Author: Marco Panunzio, University of Padua

Let’s get started…

In the previous Ada Gem we described a code archetype for a simple sporadic task.
Nevertheless, we recognized that the archetype is not completely satisfactory for at least
two reasons: (i) it is not possible to pass parameters to the sporadic operation; (ii) the
synchronization agent (OBCS) is a simple counter of pending requests.

In this Ada Gem we illustrate a more complex archetype that supports the invocation of a
sporadic operation with parameters. Additionally, we want to explore how it is possible
to enrich the OBCS to support complex queueing policies for the incoming requests.

Sporadic task

The archetype of a sporadic task that we wish to illustrate is depicted in the figure below.

Suppose that we want to create a sporadic task that at each release can execute either
operation Op1 or operation Op2, according to incoming requests by clients. Executing
different operations with the same task is not an unusual need in real-time systems,
especially when the execution platform has scarce computational power and memory
resources, and the excessive proliferation of tasks may tax the system too much.

Furthermore, in this archetype we may also want to establish some relative ordering of
importance between Op1 and Op2. We consider Op1 as the nominal operation of the
sporadic task (the operation normally called by clients), and we call it the START
operation; in contrast, we consider Op2 to be a modifier operation, called the ATC. Then,
we stipulate that pending requests for execution of Op1 are served by the sporadic task in
FIFO ordering, but requests for Op2 take precedence over pending requests of Op1. This
choice implies that modifier operations are allowed to cause a one-time (as opposed to
permanent) modification of the nominal execution behavior of the task.

Ada Letters, April 2012 39 Volume XXXII, Number 1

OBCS for a sporadic task

We want to encapsulate the implementation of this policy and simply expose to clients of
this sporadic task a set of procedures with the signatures of Op1 and Op2; the role of these
procedures is to reify the corresponding execution requests. The invocation (type and
actual parameters) is recorded in a language-level structure and stored in the OBCS.
When the sporadic task fetches a request, it decodes the original request and calls the
appropriate operation with the correct parameters.

Sporadic Task -- System Types and Task Type

Let us now have a look at the set of types we need to implement this archetype. They are
declared in a modified version of the package System_Types that we also used in the
preceding Ada Gem.

with System;
with Ada.Real_Time; use Ada.Real_Time;
with System_Time;
with Ada.Finalization; use Ada.Finalization;
package System_Types is
 -- Abstract parameter type --

type Param_Type is abstract tagged record
 In_Use : Boolean := False;

end record;
 -- Abstract functional procedure --

procedure My_OPCS (Self : in out Param_Type) is abstract;
type Param_Type_Ref is access all Param_Type'Class;
type Param_Arr is array(Integer range <>) of Param_Type_Ref;
type Param_Arr_Ref is access all Param_Arr;

 -- Request type --
type Request_T is (NO_REQ, START_REQ, ATC_REQ);

 -- Request descriptor to reify an execution request
type Request_Descriptor_T is

Ada Letters, April 2012 40 Volume XXXII, Number 1

record
 Request : Request_T;
 Params : Param_Type_Ref;

end record;
 -- Parameter buffer

type Param_Buffer_T(Size : Integer) is
record

 Buffer : aliased Param_Arr(1..Size);
 Index : Integer := 1;

end record;
type Param_Buffer_Ref is access all Param_Buffer_T;
procedure Increase_Index(Self : in out Param_Buffer_T);

We have declared a set of types to represent parameters, a type describing the kinds of
requests (START_REQ, ATC_REQ, and an additional kind NO_REQ just for the sake of
the explanation), and a request descriptor type to encapsulate the information about
invocations of Op1 and Op2. We also declare procedure My_OPCS(..), which is an
abstract procedure that represents all possible operations that can be invoked by the
sporadic task.

We now continue on with the remainder of the specification of package System_Types:

 -- Abstract OBCS --
type OBCS_T is abstract new Controlled with null record;
type OBCS_T_Ref is access all OBCS_T'Class;
procedure Put(Self : in out OBCS_T; Req : Request_T; P :

Param_Type_Ref)
is abstract;

procedure Get(Self : in out OBCS_T; R : out Request_Descriptor_T)
is abstract;

 -- Sporadic OBCS --
type Sporadic_OBCS(Size : Integer) is new OBCS_T with

record
 START_Param_Buffer : Param_Arr(1..Size);
 START_Insert_Index : Integer;
 START_Extract_Index : Integer;
 START_Pending : Integer;
 ATC_Param_Buffer : Param_Arr(1..Size);
 ATC_Insert_Index : Integer;
 ATC_Extract_Index : Integer;
 ATC_Pending : Integer;
 Pending : Integer;

end record;
overriding

 procedure Initialize(Self : in out Sporadic_OBCS);
overriding

Ada Letters, April 2012 41 Volume XXXII, Number 1

 procedure Put(Self : in out Sporadic_OBCS; Req : Request_T; P :
Param_Type_Ref);

overriding
 procedure Get(Self : in out Sporadic_OBCS; R : out
Request_Descriptor_T);

end System_Types;

Above, we declare a root type to represent an abstract OBCS (OBCS_T) and a
Sporadic_OBCS type that implements the queueing policy we previously described.
START_Param_Buffer and ATC_Param_Buffer are two distinct circular buffers that are
used to store the invocations of the respective types of operation. In addition, we create a
buffer for parameters.

The package body follows:

package body System_Types is
 -- Sporadic OBCS --

procedure Initialize (Self : in out Sporadic_OBCS) is
begin

 Self.START_Pending := 0;
 Self.START_Insert_Index := Self.START_Param_Buffer'First;
 Self.START_Extract_Index := Self.START_Param_Buffer'First;
 Self.ATC_Pending := 0;
 Self.ATC_Insert_Index := Self.ATC_Param_Buffer'First;
 Self.ATC_Extract_Index := Self.ATC_Param_Buffer'First;

end Initialize;
procedure Put(Self : in out Sporadic_OBCS; Req : Request_T; P :

Param_Type_Ref) is
begin

case Req is
when START_REQ =>

 Self.START_Param_Buffer (Self.START_Insert_Index) := P;
 Self.START_Insert_Index := Self.START_Insert_Index + 1;

if Self.START_Insert_Index > Self.START_Param_Buffer'Last
then
 Self.START_Insert_Index :=
Self.START_Param_Buffer'First;

end if;
 -- Increase the number of pending requests, but do not
overcome
 -- the number of buffered ones

if Self.START_Pending < Self.START_Param_Buffer'Last then
 Self.START_Pending := Self.START_Pending + 1;

end if;
when ATC_REQ =>

 Self.ATC_Param_Buffer (Self.ATC_Insert_Index) := P;
 Self.ATC_Insert_Index := Self.ATC_Insert_Index + 1;

if Self.ATC_Insert_Index > Self.ATC_Param_Buffer'Last then
 Self.ATC_Insert_Index := Self.ATC_Param_Buffer'First;

end if;

Ada Letters, April 2012 42 Volume XXXII, Number 1

if Self.ATC_Pending < Self.ATC_Param_Buffer'Last then
 -- Increase the number of pending requests, but do not
overcome
 -- the number of buffered ones
 Self.ATC_Pending := Self.ATC_Pending + 1;

end if;
when others => null;

end case;
 Self.Pending := Self.START_Pending + Self.ATC_Pending;

end Put;
procedure Get(Self : in out Sporadic_OBCS; R : out

Request_Descriptor_T) is
begin

if Self.ATC_Pending > 0 then
 R := (ATC_REQ, Self.ATC_Param_Buffer(Self.ATC_Extract_Index));
 Self.ATC_Extract_Index := Self.ATC_Extract_Index + 1;

if Self.ATC_Extract_Index > Self.ATC_Param_Buffer'Last then
 Self.ATC_Extract_Index := Self.ATC_Param_Buffer'First;

end if;
 Self.ATC_Pending := Self.ATC_Pending - 1;

else
if Self.START_Pending > 0 then

 R := (START_REQ,
Self.START_Param_Buffer(Self.START_Extract_Index));
 Self.START_Extract_Index := Self.START_Extract_Index +
1;

if Self.START_Extract_Index >
Self.START_Param_Buffer'Last then
 Self.START_Extract_Index :=
Self.START_Param_Buffer'First;

end if;
 Self.START_Pending := Self.START_Pending - 1;

end if;
end if;

 R.Params.In_Use := True;
 Self.Pending := Self.START_Pending + Self.ATC_Pending;

end Get;
procedure Increase_Index(Self : in out Param_Buffer_T) is
begin

 Self.Index := Self.Index + 1;
if Self.Index > Self.Buffer'Last then

 Self.Index := Self.Buffer'First;
end if;

end Increase_Index;
end System_Types;

In the package body we implement the desired queuing policy. Procedure Put(..)
simply inserts the representation of the incoming request in the queue of the requested
operation kind (START_REQ or ATC_REQ). The ordering among requests of the same
operation kind is FIFO.

Ada Letters, April 2012 43 Volume XXXII, Number 1

Procedure Get(..) is used to extract a request descriptor. We can see that as long as
there are pending ATC requests, they are selected based on their arrival order. When the
ATC queue is empty, requests for START operations are fetched.

The task that uses this sporadic OBCS has a specification almost identical to the "simple
sporadic task" we presented in the preceding Ada Gem. The only difference is that
Get_Request now also fetches a request descriptor.

with System_Types; use System_Types;
with System; use System;
with Ada.Real_Time; use Ada.Real_Time;
generic

with procedure Get_Request(Req : out Request_Descriptor_T;
 Release : out Time);
package Sporadic_Task is

task type Thread_T (Thread_Priority : Any_Priority;
 MIAT : Integer) is

pragma Priority (Thread_Priority);
end Thread_T;

end Sporadic_Task;

The body for the task type follows:

with System_Time; use System_Time;
package body Sporadic_Task is

task body Thread_T is
 Req_Desc : Request_Descriptor_T;
 Release : Time;
 Next_Time : Time := System_Start_Time;

begin
loop

delay until Next_Time;
 Get_Request (Req_Desc, Release);
 Next_Time := Release + Milliseconds (MIAT);

case Req_Desc.Request is
when NO_REQ =>

 null;
when START_REQ | ATC_REQ =>

 My_OPCS (Req_Desc.Params.all);
when others =>

 null;
end case;

end loop;
end Thread_T;

end Sporadic_Task;

Notice that the descriptor of the fetched request can be used to discriminate the action to
perform according to the type of operation (this is done with the case statement). In our

Ada Letters, April 2012 44 Volume XXXII, Number 1

case, if we fetch a request of kind START_REQ or ATC_REQ, we simply execute
My_OPCS, that will dynamically dispatch to the requested operation. This mechanism
will be clear when, in a later Gem, we complete the picture with the declaration of Op1
and Op2 as seen by their clients.

Related Source Code

Ada Gems example files are distributed by AdaCore and may be used or modified for any
purpose without restrictions.

Ada Letters, April 2012 45 Volume XXXII, Number 1

Gem #95: Dynamic Stack Analysis in GNAT

Author: Quentin Ochem

Let’s get started…

Determining how much stack space should be allocated to tasks is a common memory-
management problem. In the absence of tool support, often the only information that
developers have is the output EXCEPTION_STACK_OVERFLOW when their program
crashes. GNAT offers two basic ways for users to get information on a program's stack
usage -- statically or dynamically. This Gem addresses how to obtain data on dynamic
stack usage. Measurement of static stack usage will be covered in a later Gem.

Computing the stack size at task termination

Let's start with a simple program that has a task whose stack size is determined at run
time:

procedure Main is
task T is

entry E (Size : Integer);
end T;
task body T is
begin

accept E (Size : Integer) do
declare

 V : array (1 .. Size) of Integer := (others => 0);
begin

null;
end;

end E;
end T;

begin
 T.E (500_000);
end Main;

This program works fine, but what are its stack requirements? Is there a possibility that
by adding new code which may consume additional stack, we'll hit the roof? Let's find
out by compiling this with stack instrumentation:

gnatmake main.adb -bargs -u10

The "-bargs -u10" switch causes "-u10" to be passed to the GNAT binder, which will
allow up to ten tasks to be instrumented and will output their stack usage upon program
completion.

Compiled this way, the program outputs the following information:

Ada Letters, April 2012 46 Volume XXXII, Number 1

 Index | Task Name | Stack Size | Stack usage
 1 | t | 2097152 | 2008872 +/- 8188

This means that out of the 2,097,152 bytes that are available for the task's stack,
2,008,872 are currently used by the program.

Adjusting the stack size

Our stack seems quite full here, and it's probably reasonable to increase its size to be on
the safe side and to avoid potential exceptions when the program is extended. This can be
done easily by using a pragma Storage_Size:

task T is
pragma Storage_Size (3_000_000);
entry E (Size : Integer);

end T;

Compiling the same program with these changes results in these numbers:

 Index | Task Name | Stack Size | Stack usage
 1 | t | 3000000 | 2008872 +/- 8188

This is much more reasonable.

Computing the stack size at run time

We're now going to create a new version of the task that can be called multiple times.
Since this task is going to live longer, and do several things for different clients, we
would like to be able to probe the task at different times, namely each time the entry is
called. The run-time package GNAT.Task_Stack_Usage provides the means of
instrumenting the task. Let's modify the task body as follows:

task T is
pragma Storage_Size (3_000_000);
entry E (Size : Integer; Name : String);

end T;
task body T is
begin

loop
accept E (Size : Integer; Name : String) do

declare
 V : array (1 .. Size) of Integer := (others => 0);

begin
 Put_Line ("MAX USAGE OF T AFTER " & Name & ":"
 & Natural'Image
(GNAT.Task_Stack_Usage.Get_Current_Task_Usage.Value));

end;
end E;

Ada Letters, April 2012 47 Volume XXXII, Number 1

end loop;
end T;

Note the call to Get_Current_Task_Usage, which computes the amount of stack
consumed so far after each call to E. Let's now call this entry several times:

 T3.E (5_000, "OP 1");
 T3.E (100_000, "OP 2");
 T3.E (20_000, "OP 3");
 T3.E (800_000, "OP 4");

This will output:

MAX USAGE OF T AFTER OP 1: 29392
MAX USAGE OF T AFTER OP 2: 409392
MAX USAGE OF T AFTER OP 3: 411204
raised STORAGE_ERROR : EXCEPTION_STACK_OVERFLOW

Observe that the size of the stack is computed after each call, except for the last call,
which results in an exception. Also note an interesting side effect: "OP 3" should take
less stack space than "OP 2", so we would normally expect the number to be the same.
What's happening is that in "OP 2", the string "MAX USAGE OF T AFTER OP 2:
409392" is computed first, and then Put_Line is called, which itself consumes some
stack, up to the level of 411204 bytes. So 411204 is actually the maximum amount of
stack space used by OP 2, even though the value displayed is less.

Related Source Code

Ada Gems example files are distributed by AdaCore and may be used or modified for any
purpose without restrictions.

Ada Letters, April 2012 48 Volume XXXII, Number 1

HILT 2012: HIGH INTEGRITY LANGUAGE TECHNOLOGY
ACM SIGAda’s Annual International Conference

December 2– 6, 2012 / Boston, Massachusetts / Advance Program

High integrity software must not only meet correctness and performance criteria but also satisfy
stringent safety and/or security demands, typically entailing certification against a relevant standard.

A significant factor affecting whether and how such requirements are met is the chosen language
technology and its supporting tools: not just the programming language(s) but also languages for
expressing specifications, program properties, domain models, and other attributes of the software or
overall system.

HILT 2012 provides a forum for the leading experts from academia/research, industry, and government
to present their latest findings in designing, implementing, and using language technology for high
integrity software.

Sponsored by SIGAda, ACM’s Special Interest Group on the Ada Programming Language,
in cooperation with SIGCSE, SIGPLAN, SIGSOFT, SIGBED, Ada-Europe, and the Ada Resource Association.

KEYNOTE TOPICS / FEATURED SPEAKERS CORPORATE SPONSORS
High-Assurance Cyber Military Systems (HACMS):
High-Assurance Vehicles
KATHLEEN FISHER
DARPA Information Innovation Office

Challenges for Safety-Critical Software
NANCY LEVESON
Massachusetts Institute of Technology
Department of Aeronautics and Astronautics
Engineering Systems Division

Programming the Turing Machine
BARBARA LISKOV
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

Hardening Legacy C/C++ Code
GREG MORRISETT
Harvard University
School of Engineering and Applied Sciences

Programming Language Life Cycles
GUY L. STEELE, JR.
Oracle Labs

PLATINUM LEVEL

SILVER LEVEL

Ada Letters, April 2012 49 Volume XXXII, Number 1

TECHNICAL PROGRAM / December 4 – 6

TUESDAY
Analyzing and
Proving Programs

9:00 AM–10:30 AM
Greetings

SIGAda and Conference Officers
Keynote Address

Barbara Liskov,
Massachusetts Institute of Technology
Programming the Turing Machine

10:30 AM–11:00 AM Break / Exhibits

11:00 AM–12:30 PM
Program Verification at Compile-Time

K. Rustan M. Leino
Program Proving Using Intermediate
Verification Languages (IVLs) like
Boogie and Why3

C. Dross, J. Känig, and E. Schonberg
Hi-Lite: The Convergence of Compiler
Technology and Program Verification

Industrial/Sponsor Presentation

12:30 PM–2:00 PM Break / Exhibits

2:00 PM–3:30 PM
Keynote Address

Greg Morrisett, Harvard University
Hardening Legacy C/C++ Code

3:30 PM–4:00 PM Break / Exhibits

4:00 PM–5:30 PM
Advancing Compilation Technology

V. Pucci and E. Schonberg
The Implementation of Compile-Time
Dimensionality Checking

H. Kirtchev
A Robust Implementation of Ada’s
Finalizable Controlled Types

5:30 PM–7:00 PM Break

7:00 PM–10:00 PM
Social Event / Dinner

WEDNESDAY
Security and Safety

9:00 AM–10:30 AM
Announcements
SIGAda Awards

Ricky E. Sward, SIGAda Chair
Keynote Address

Kathleen Fisher, DARPA
HACMS: High-Assurance Vehicles

10:30 AM–11:00 AM Break / Exhibits

11:00 AM–12:30 PM
Languages and Security

M. Norrish
Formal Verification of the seL4 Microkernel

D. S. Hardin
DSL for Cross-Domain Security

Industrial/Sponsor Presentation

12:30 PM–2:00 PM Break / Exhibits

2:00 PM–3:30 PM
Keynote Address

Nancy Leveson,
Massachusetts Institute of Technology
Challenges for Safety-Critical Software

3:30 PM–4:00 PM Break

4:00 PM–5:30 PM
Languages and Safety

TRACK 1
Industrial Session on Safety

K. Nilsen
Real-Time Java in the Modernization
of the Aegis Weapon System

J. O’Leary
Software for FAA’s Automatic Data Comm
Between Air Traffic Controller and Pilot

Industrial/Sponsor Presentation

Industrial/Sponsor Presentation

TRACK 2
Real Time Systems

G. Bosch
Synchronization Cannot Be a Library

S. Li et al.
Applicability of RT Schedulability Analysis
on a Software Radio Protocol

Industrial/Sponsor Presentation

5:30 PM–7:00 PM Break

7:00 PM–10:00 PM
Workshops / Birds-of-a-Feather Sessions

THURSDAY
Designing and
Implementing Languages

9:00 AM–10:30 AM
Announcements
Best Paper and Student Paper Awards

Jeff Boleng, HILT 2012 Program Co-Chair
Keynote Address

Guy L. Steele, Jr., Oracle Labs
Programming Language Life Cycles

10:30 AM–11:00 AM Break

11:00 AM–1:00 PM
Compiler Certification Issues

D. Eilers and T. Koskinen
Adapting ACATS for Use with Run-Time
Checks Suppressed

Panel on Compiler Certification
L. Berringer (CompCert), R. Brukardt (Ada),
T. Plum (C, C++, Java)

Announcements
(Ada-Europe 2013, SIGAda 2013)

Closing Remarks and
Conference Adjournment

To register online, and for more
information and updates, visit
www.sigada.org/conf/hilt2012

PRE-CONFERENCE TUTORIALS / December 2–3

SUNDAY
Pre-Conference Tutorials

SF1— Full Day / 9:00 AM–5:30 PM
Bo I. Sandén /
Colorado Technical University
Design of Multitask Software:
The Entity-Life Modeling Approach

SA1—Morning / 9:00 AM–12:30 PM
Jason Belt, Patrice Chalin, John Hatcliff,
and Robby / Kansas State University
Leading-Edge Ada Verification
Technologies: Highly Automated Ada
Contract Checking Using Bakar Kiasan

SA2—Morning / 9:00 AM–12:30 PM
Ed Colbert / Absolute Software
Ada 2012 Contracts and Aspects

SP1—Afternoon / 2:00 PM–5:30 PM
Johannes Känig / AdaCore
Leading-Edge Ada Verification
Technologies: Combining Testing
and Verification with GNATTest and
GNATProve — The Hi-Lite Project

SP2—Afternoon / 2:00 PM–5:30 PM
Ed Colbert / Absolute Software
Object-Oriented Programming with
Ada 2005 and 2012

MONDAY
Pre-Conference Tutorials

MF1—Full Day / 9:00 AM–5:30 PM
Nancy Leveson, Cody Fleming,
and John Thomas /
Massachusetts Institute of Technology
Safety of Embedded Software

MA1—Morning / 9:00 AM–12:30 PM
K. Rustan M. Leino / Microsoft Research
Developing Verified Programs
with Dafny

MA2—Morning / 9:00 AM–12:30 PM
Ricky E. Sward / The MITRE Corporation
Jeff Boleng /
Software Engineering Institute
Service-Oriented Architecture (SOA)
Concepts and Implementations

MP1 —Afternoon / 2:00 PM–5:30 PM
Tucker Taft / AdaCore
Multicore Programming using
Divide-and-Conquer and Work Stealing

MP2—Afternoon / 2:00 PM–5:30 PM
Kevin Nilsen / Atego
Understanding Dynamic Memory
Management in Safety Critical Java

Ada Letters, April 2012 50 Volume XXXII, Number 1

VENUE / HOTEL
HILT 2012 will be held at the Hyatt Regency Boston, www.hyattregencyboston.com, conveniently located in downtown
Boston with easy access from Logan Airport.

A block of rooms is reserved for the conference from Thursday night, November 29, through Wednesday night,
December 12. The conference rate is $159 for single or double occupancy rooms, $183 for triple occupancy rooms,
and $208 for quadruple occupancy rooms. All guest rooms include complimentary wireless Internet. Reservations
must be guaranteed by credit card and received by November 3. After this date, the hotel is not obligated to honor
conference rates. Please also visit www.sigada.org/conf/hilt2012/hotel-rates.html and www.acm.org/sig_volunteer_info
/whyhotel.htm for additional details.

SPONSORS / EXHIBITORS
HILT 2012 will include vendor participation, featuring presentations on their products and services during main
sessions. For specific information, please contact the Exhibits Chair, Alok Srivastava, alok.srivastava@tasc.com.

GRANTS TO EDUCATORS
As in past years, SIGAda is offering grants to educators to attend the conference. Grants cover the registration
and tutorial fees; members of the GNAT Academic Program may be eligible for travel funds from AdaCore. Apply
by e-mail, no later than November 16, 2012. Grant program details are available from the conference website or
Professor Michael B. Feldman, mfeldman@gwu.edu.

WORKSHOPS / BIRDS-OF-A-FEATHER
To propose a focused workshop or informal Birds-of-a-Feather session related to the conference theme, please
contact the Workshops Chair, John W. McCormick, mccormick@cs.uni.edu.

REGISTRATION FEES

CONFERENCE TEAM
Conference Chair / Local Arrangements Chair
Ben Brosgol, AdaCore / brosgol@adacore.com

Program Co-Chair / Proceedings Chair
Jeff Boleng, US Air Force Academy / jeff@boleng.com

Program Co-Chair
Tucker Taft, AdaCore / taft@adacore.com

Workshops Chair / Tutorials Chair
John W. McCormick, University of Northern Iowa /
mccormick@cs.uni.edu

Treasurer
Ricky E. Sward, The MITRE Corporation / rsward@mitre.org

Webmaster
Clyde Roby, Institute for Defense Analyses / clyderoby@acm.org

Exhibits and Sponsorships Chair
Alok Srivastava, TASC Inc. / alok.srivastava@tasc.com

Registration Chair / Academic Community Liaison
Michael B. Feldman, George Washington University (Ret.) /
mfeldman@gwu.edu

Publicity Chair
Greg Gicca, AdaCore / gicca@adacore.com

Logo Designer
Weston Pan, Raytheon Space and Airborne Systems

SIGAda Officers

Chair
Ricky E. Sward, The MITRE Corporation / rsward@mitre.org

Vice Chair for Meetings and Conferences
Ada Letters Editor
Alok Srivastava, TASC Inc. / alok.srivastava@tasc.com

Vice Chair for Liaison
Greg Gicca, AdaCore / gicca@adacore.com

International Representative
Dirk Craeynest, K U Leuven, Department of Computer Science /
dirk.craeynest@cs.kuleuven.be

Secretary
Clyde Roby, Institute for Defense Analyses / clyderoby@acm.org

Treasurer
Geoff Smith, Lightfleet Corporation / gsmith@lightfleet.com

Past Chair
John W. McCormick, University of Northern Iowa /
mccormick@cs.uni.edu

CONFERENCE (FULL)
Member of ACM, SIGAda, or
cooperating organization:
$575 early / $725 after Nov. 30

Non-members:
$875 early / $975 after Nov. 30

Full-time Student: $50

CONFERENCE (ONE DAY)
Member of ACM, SIGAda, or
cooperating organization:
$325 early / $325 after Nov. 30

Non-members:
$325 early / $325 after Nov. 30

Full-time Student: $25

TUTORIAL (FULL DAY)
Member of ACM, SIGAda, or
cooperating organization:
$310 early / $370 after Nov. 30

Non-members:
$420 early / $470 after Nov. 30

Full-time Student: $30

TUTORIAL (HALF DAY)
Member of ACM, SIGAda, or
cooperating organization:
$155 early / $185 after Nov. 30

Non-members:
$210 early / $235 after Nov. 30

Full-time Student: $15

For early registration rates, register online by November 30 at http://sigada.org/conf/hilt2012/register/index.html

Ada Letters, April 2012 51 Volume XXXII, Number 1

Association for Computing Machinery
2 Penn Plaza, Suite 701
New York, NY 10201-0701
USA

ACM’s High Integrity Language Technology Conference
HILT 2012 Advance Program

Boston, Massachusetts, USA / December 2– 6, 2012
www.sigada.org/conf/hilt2012

Visit www.sigada.org/conf/hilt2012

Come to HILT 2012 and discover the latest
developments in language technology for
safe, secure, and reliable software.
Listen to and meet world-renowned experts in the field, see how industry is
converting research into practical experience, and learn both the challenges
confronting high-integrity software and the solutions available to address them.

REGISTER ONLINE BY NOVEMBER 30 FOR THE LOWEST REGISTRATION RATES

Sponsored by ACM SIGAda

Ada Letters, April 2012 52 Volume XXXII, Number 1

	SIGADAv32n1AprCovsPROOF
	21460covers_001_Final
	21460covers_002_Final

	SIGADAv32n1AprInsPROOF (1)
	21460p1x52_001_Final
	21460p1x52_002_Final
	21460p1x52_003_Final
	21460p1x52_004_Final
	21460p1x52_005_Final
	21460p1x52_006_Final
	21460p1x52_007_Final
	21460p1x52_008_Final
	21460p1x52_009_Final
	21460p1x52_010_Final
	21460p1x52_011_Final
	21460p1x52_012_Final
	21460p1x52_013_Final
	21460p1x52_014_Final
	21460p1x52_015_Final
	21460p1x52_016_Final
	21460p1x52_017_Final
	21460p1x52_018_Final
	21460p1x52_019_Final
	21460p1x52_020_Final
	21460p1x52_021_Final
	21460p1x52_022_Final
	21460p1x52_023_Final
	21460p1x52_024_Final
	21460p1x52_025_Final
	21460p1x52_026_Final
	21460p1x52_027_Final
	21460p1x52_028_Final
	21460p1x52_029_Final
	21460p1x52_030_Final
	21460p1x52_031_Final
	21460p1x52_032_Final
	21460p1x52_033_Final
	21460p1x52_034_Final
	21460p1x52_035_Final
	21460p1x52_036_Final
	21460p1x52_037_Final
	21460p1x52_038_Final
	21460p1x52_039_Final
	21460p1x52_040_Final
	21460p1x52_041_Final
	21460p1x52_042_Final
	21460p1x52_043_Final
	21460p1x52_044_Final
	21460p1x52_045_Final
	21460p1x52_046_Final
	21460p1x52_047_Final
	21460p1x52_048_Final
	21460p1x52_049_Final
	21460p1x52_050_Final
	21460p1x52_051_Final
	21460p1x52_052_Final

