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From the Editor’s Desk  
 

Alok Srivastava 
 

Welcome to this issue of ACM Ada Letters. In this issue you will find very remarkable papers presented 

at 15th International Real-Time Ada Workshop (IRTAW-15) in Liébana (Cantabria), Spain. Since the late 

Eighties the International Real-Time Ada Workshop series has provided a forum for identifying issues 

with real-time system support in Ada and for exploring possible approaches and solutions, and has 

attracted participation from key members of the research, user, and implementer communities worldwide. 

Recent IRTAW meetings have significantly contributed to the Ada 2005 standard and to the proposals for 

Ada 2012, especially with respect to the tasking features, the real-time and high-integrity systems 

annexes, and the standardization of the Ravenscar profile. The summary and outcome of various focused 

sessions during the IRTAW-15 are listed here. 

 

In this issue you will find the Call for Technical Contributions for the High-Integrity Language 

Technology SIGAda 2013 conference to be held from November 10-14, 2013 in Pittsburgh, Pennsylvania 

(USA). The conference will feature three outstanding keynote speakers Edmund M. Clarke from Carnegie 

Mellon University and 2007 ACM Turing Award winner, Jeannette Wing from Microsoft Research and 

Ada veteran John Goodenough from Software Engineering Institute. Another major Ada event, the 18th 

International Conference on Reliable Software Technologies Ada-Europe 2013 to be held from June 10 

to14, 2013 in Berlin, Germany. 

 

In this issue you will also find one very interesting research paper “Investigating SystemAda: TLM_FIFO 

Detailed Characteristics Proof, TLM2.0 Interfaces Implementation, Simulation Time Comparison to 

SystemC” by our regular contributor Negin Mahani. In another paper by Takeo Ekiba, Yuichi Goto, and 

Jingde Cheng from Saitama University, Japan have presented some new types of tasking deadlocks 

concerning the new synchronization waiting relations defined in the Ada 2012. 

 

Ada Letters is a great place to submit articles of your experiences with the language revision, tips on 

usage of the new language features, as well as to describe success stories using Ada. We’ll look forward 

to your submission. You can submit either a MS Word or Adobe PDF file (with 1” margins and no page 

numbers) to our technical editor:  
 

Pat Rogers, Ph.D.  

AdaCore, 207 Charleston, Friendswood, TX 77546 (USA) 

+1 281 648 3165, Rogers@AdaCore.Com 
 

 

We look forward to hearing from you!  
 

Alok Srivastava, Ph.D. 

Technical Fellow, TASC Inc. 

475 School St, SW; Washington, DC 20024 (USA) 

+1 202 314 1419 Alok.Srivastava@TASC.Com
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Editorial Policy (from Alok Srivastava, Managing Editor) 

 

As the editor of ACM Ada Letters, I’d like to thank you for your continued support to ACM 

SIGAda, R&D in the areas of High Reliability and Safety Critical Software Development and 

encourage you to submit articles for publication.  In addition, if there is some way we can make 

ACM Ada Letters more useful to you, please let me know.  Note that Ada Letters is now on the 

web!  See http://www.acm.org/sigada/ada_letters/index.html.  The two newest issues are 

available only to SIGAda members.  Older issues beginning March 2000 are available to all. 

 

Now that Ada is standing on its own merits without the support of the DoD, lots of people and 

organizations have stepped up to provide new tools, mechanisms for compiler 

validation/assessment, and standards (especially ASIS). The Ada 2012 language version is 

fulfilling the market demand of robust safety and security elements and thereby generating a new 

enthusiasm into the software development. Ada Letters is a venue for you to share your 

successes and ideas with others in the Ada and specifically in High Reliability Safety Critical 

Software Development community. Be sure to take advantage of it so that we can all benefit 

from each other’s learning and experience. 

 

As some of the other ACM Special Interest Group periodicals have moved, Ada  

Letters also transitioned to a tri-annual publication. With exception of special issues, Ada 

Letters now is going to be published three times a year, with the exception of special issues. The 

revised schedules and submission deadlines are as follows: 
 

Deadline                          Issue                                Deadline                                    Issue            

June 1
st
, 2013                   August, 2013                   October 1

st
, 2013               December, 2013                                            

February 1
st
, 2014            April, 2014                      June 1

st
, 2014                     August, 2014              

 

Please send your article to Dr. Pat Rogers at rogers@adacore.com 

 

Guidelines for Authors  
Letters, announcements and book reviews should be sent directly to the Managing Editor and 

will normally appear in the next corresponding issue. 

  

Proposed articles are to be submitted to the Technical Editor.  Any article will be considered for 

publication, provided that topic is of interest to the SIGAda membership.  Previously published 

articles are welcome, provided the previous publisher or copyright holder grants permission.  In 

particular, keeping with the theme of recent SIGAda conferences, we are interested in 

submissions that demonstrate that “Ada Works.”  For example, a description of how Ada helped 

you with a particular project or a description of how to solve a task in Ada are suitable. 

 

Although Ada Letters is not a refereed publication, acceptance is subject to the review and 

discretion of the Technical Editor. In order to appear in a particular issue, articles must be 

submitted far enough in advance of the deadline to allow for review/edit cycles. Backlogs may 

result in an article's being delayed for two or more issues. Contact the Managing Editor for 

information on the current publishing queue. 
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Articles should be submitted electronically in one of the following formats: MS Word (preferred) 

Postscript, or Adobe Acrobat.  All submissions must be formatted for US Letter paper (8.5” x 

11”) with one inch margins on each side (for a total print area of 6.5” x 9”) with no page 

numbers, headers or footers. Full justification of text is preferred, with proportional font 

(preferably Times New Roman, or equivalent) of no less than 10 points.  Code insertions should 

be presented in a non-proportional font such as Courier. 

 

The title should be centered, followed by author information (also centered).  The author's name, 

organization name and address, telephone number, and e-mail address should be given. For 

previously published articles, please give an introductory statement (in a distinctive font) or a 

footnote on the first page identifying the previous publication. ACM is improving member 

services by creating an electronic library of all of its publications.  Read the following for how 

this affects your submissions. 

 

Notice to Contributing Authors to SIG Newsletters: 
By submitting your article for distribution in this Special Interest Group publication, you hereby 

grant to ACM the following non-exclusive, perpetual, worldwide rights: 

 

 to publish in print on condition of acceptance by the editor 

 to digitize and post your article in the electronic version of this publication 

 to include the article in the ACM Digital Library 

 to allow users to copy and distribute the article for noncommercial, educational or 

research purposes 

 

However, as a contributing author, you retain copyright to your article and ACM will make 

every effort to refer requests for commercial use directly to you. 

 

Notice to Past Authors of ACM-Published Articles 
ACM intends to create a complete electronic archive of all articles and/or other material 

previously published by ACM. If you have a work that has been previously published by ACM 

in any journal or conference proceedings prior to 1978, or any SIG Newsletter at any time, and 

you do NOT want this work to appear in the ACM Digital Library, please inform 

permissions@acm.org, stating the title of the work, the author(s), and where and when published. 

 

Back Issues 
Back issues of Ada Letters can be ordered at the price of $6.00 per issue for ACM or SIGAda 

members; and $9.00 per issue for non-ACM members. Information on availability, contact the 

ACM Order Department at 1-800-342-6626 or 410-528-4261. Checks and credit cards only are 

accepted and payment must be enclosed with the order. Specify volume and issue number as well 

as date of publication. Orders must be sent to: 

 

ACM Order Department, P.O. Box 12114, Church Street Station, New York, NY 10257 or via 

FAX: 301-528-8550. 
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KEY CONTACTS 

 
Technical Editor 

Send your book reviews, letters, and articles to: 

 

Pat Rogers 

AdaCore 

207 Charleston 

Friendswood, TX 77546 

+1-281-648 3165 

Email: rogers@adacore.com 

 

Managing Editor 

Send announcements and short notices to: 

 

Alok Srivastava 

TASC Inc. 

475 School Street, SW 

Washington DC 20024 

+1-202-314-1419 

Email: Alok.Srivastava@tasc.com 

 

 

Advertising 

Send advertisements to: 

 

William Kooney 

Advertising/Sales Account Executive 

2 Penn Plaza, Suite 701 

New York, NY 10121-0701  

Phone: +1-212-869-7440 

Fax: +1-212-869-0481 

 

 

Local SIGAda Matters 

Send Local SIGAda related matters to: 

 

Greg Gicca 

AdaCore 

1849 Briland Street 

Tarpon Springs, FL 34689, USA 

Phone: +1-646-375-0734 

Fax: +1-727-944-5197 

Email: Gicca@AdaCore.Com 

Ada CASE and Design Language Developers 

Matrix 

Send ADL and CASE product Info to: 

 

Judy Kerner 

The Aerospace Corporation 

Mail Stop M8/117 

P.O. Box 92957 

Los Angeles, CA 90009 

+1-310-336-3131 

Email: kerner@aero.org 

 

 

Ada Around the World 

Send Foreign Ada organization info to: 

 

Dirk Craeynest 

c/o K.U.Leuven, Dept. of Computer Science, 

Celestijnenlaan 200-A, B-3001 Leuven (Heverlee) 

Belgium 

Email: Dirk.Craeynest@cs.kuleuven.be  

 

 

Reusable Software Components 

Send info on reusable software to: 

 

Trudy Levine 

Computer Science Department 

Fairleigh Dickinson University 

Teaneck, NJ 07666 

+1-201-692-2000 

Email: levine@fdu.edu 
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SIGAda Working Group (WG) Chairs 
See http://www.acm.org/sigada/ for most up-to-date information 

 
Ada Application Programming Interfaces WG 

Geoff Smith 

Lightfleet Corporation 

4800 NW Camas Meadows Drive 

Camas, WA 98607 

Phone: +1-503-816-1983 

Fax: +1-360-816-5750 

Email: gsmith@lightfleet.com 
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http://www.acm.org/sigada/wg/asiswg/asiswg.html 

Bill Thomas 

The MITRE Corp 

7515 Colshire Drive 

McLean, VA  22102-7508 

Phone: +1-703-983-6159 

Fax: +1-703-983-1339 

Email: BThomas@MITRE.Org 

 

Education WG 

http://www.sigada.org/wg/eduwg/eduwg.html 

Mike Feldman 
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Portland, OR 97209-2970  

Email: MFeldman@seas.gwu.edu 
 

 Standards WG 

 Robert Dewar 

 73 5th Ave. 

 New York, NY 10003 

 Phone: +1-212-741-0957 

 Fax: +1-232-242-3722 

 Email: dewar@cs.nyu.edu 
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Ada Around the World 
(National Ada Organizations) 

From: http://www.ada-europe.org/members.html 

 

Ada-Europe  
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University of Padua 
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Rei Stråhle  
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Ada in Switzerland 
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Abstract

Multiprocessor platforms are becoming the norm for more powerful embedded real-time systems. Although Ada allows
its tasks to be executed on such platforms, until recently it has provided no explicit support. The new revision of Ada now
provides facilities for allocating and scheduling tasks on SMP platforms. The notions of a CPU and Dispatching-Domain
have been introduced. We summaries these facilities and review the extra support that could be provided in the future for
SMP and non-SMP platforms.

1 Introduction

The support that Ada provides, or should provide, for programs executing on multiprocessor or multicore platforms has
been the subject of a number of IRTAW papers [11, 10, 6, 12, 8] and discussion sessions [7, 5] at the last two workshops.
This is in addition to the many papers there have been, since the very first workshop, on distributed systems.

At the last workshop a number of recommendation were made for extensions to be included in the current revision to
the Ada standard. Many, but not all, of these suggestions have been incorporated into the draft language definition that is
currently been finalised. In this paper we briefly review the features that will be supported in Ada 2012, and revisit the many
other topics that have been discussed previously but have are not made it into the Standard. Our aim is to inform a possible
workshop discussion on what should be included in future amendments of the language, and what features might better be
addressed by other formal or defacto standards.

2 Basic Requirements

The primary requirement for supporting the execution of Ada tasks on symmetric multiprocessors (SMPs) is to manage
the mapping of tasks to processors [4]. We assume that we are concerned with real-time code, in which case the execution
of any task can be view as a sequence of invocations or jobs. Between jobs, the task is blocked, waiting either for an event
(typically an external interrupt) or for a future time instance. In this paper we do not discuss support for resource sharing
between jobs. This topic is discussed in depth in an accompanying paper to the workshop.

To cater for the allocation/mapping of tasks/jobs to processors, two basic approaches are possible:

1. Fully Partitioned – each task is allocated to a single processor on which all its jobs must run; and

2. Global – all tasks/jobs can run on all processors, jobs may migrate during execution.

There are many motivation for choosing either global or partitioned allocation, some of these motivations come from
issues of scheduling [2]. These details are not significant here, what is important is that the Ada language is able to support
both schemes.

From these schemes, two further variants are commonly discussed: for global scheduling, tasks are restricted to a subset
of the available CPUs; and for partitioned scheduling, the program can explicitly change a task’s affinity and hence cause it
to be moved at run-time.
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Restricting the set of CPUs on which a task can be globally scheduled supports scalability – as platforms move to contain
hundreds of CPUs, the overheads of allowing full task migration become excessive and outweighs any advantage that might
accrue from global scheduling. Controlled changing of a task’s affinity has been shown to lead to improved schedulability
for certain types of application [9, 1, 3].

In the following discussions, in keeping with the terminology in the new Ada Standard, we will use the term dispatching
domain to represent a group of processors across which global scheduling occurs. A task is said to be assigned to a dispatching
domain and may also be restricted to a particular CPU.

For non-SMPs there are many other issues to consider. For cc-NUMA architectures these include the memory map,
partitioning of the heap and control over object location. We will return to these issues in Section 4.2.

3 Features in Ada 2012

The following packages allows the group of CPUs to be partitioned into a finite set of non-overlapping ‘Dispatch-
ing Domains’. One dispatching domain is defined to be the ‘System’ dispatching domain; the environmental task and any
derived from that task are allocated to the ‘System’ dispatching domain. Subprograms are defined to allow new dispatching
domains to be created.

Tasks can be assigned to a dispatching domain and be globally scheduled within that dispatching domain; alternatively
they can be assigned to a dispatching domain and restricted to a specific CPU within that dispatching domain. Tasks cannot
be assigned to more than one dispatching domain, or restricted to more than one CPU.

The first package just defines a parent unit for all microprocessor facilities, and give a range for an integer representation
of each CPU. Note the value 0 is used to indicate Not A Specific CPU; so the CPUs are actually numbered from one.
The function Number Of CPUs will, for any execution of the program, return the same value. In effect the number of CPUs
is a constant and reflects the number of available processors at system start up.

package System.Multiprocessors is
pragma Preelaborate(Multiprocessors);
type CPU_Range is range 0 .. <implementation-defined>;
Not_A_Specific_CPU : constant CPU_Range := 0;
subtype CPU is CPU_Range range 1 .. CPU_Range’Last;
function Number_Of_CPUs return CPU;

end System.Multiprocessors;

The second package provides the support for dispatching domains.

with Ada.Real_Time;
package System.Multiprocessors.Dispatching_Domains is
pragma Preelaborate(Dispatching_Domains);
Dispatching_Domain_Error : exception;
type Dispatching_Domain (<>) is limited private;
System_Dispatching_Domain : constant Dispatching_Domain;
-- initially all CPUs are in System_Dispatching_Domain
function Create(First, Last : CPU) return Dispatching_Domain;
-- removes specified CPUs from System_Dispatching_Domain
function Get_First_CPU(Domain : Dispatching_Domain) return CPU;
function Get_Last_CPU(Domain : Dispatching_Domain) return CPU;
function Get_Dispatching_Domain(T : Task_Id := Current_Task)

return Dispatching_Domain;
procedure Assign_Task(Domain : in out Dispatching_Domain;
CPU : in CPU_Range := Not_A_Specific_CPU;
T : in Task_Id := Current_Task);

procedure Set_CPU(CPU : in CPU_Range; T : in Task_Id := Current_Task);
function Get_CPU(T : in Task_Id := Current_Task) return CPU_Range;
procedure Delay_Until_And_Set_CPU(
Delay_Until_Time : in Ada.Real_Time.Time; CPU : in CPU_Range);

private
... -- not specified by the language

end System.Multiprocessors.Dispatching_Domains;

The semantics of the features contained in this package are as one would expect, and are similar to those defined and
recommended during the last IRTAW. However, it should be noted that a number of more general features identified during
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the last workshop did not get included in the language amendment; in particular, the dispatching rules for each dispatching
domain cannot be individually defined.

Although a pragma can be used to define CPU and Dispatching Domain:

pragma Dispatching_Domain(expression);
pragma CPU(expression);

for example,

task type T (Pri : System.Priority; Core : System.Multiprocessors.CPU) is
pragma Priority(Pri);
pragma CPU(Core);
pragma Dispatching_Domain(Hard_Real_Time);
entry SomeEntry(...); ...

end T;

where Hard Real Time is a defined Dispatching Domain, the use of such pragmas is now deprecated (deemed ob-
solescent) and aspects should be employed. The above code should now be written as:

task type T (Pri: System.Priority; Core : System.Multiprocessors.CPU) with
Priority => Pri,
CPU => Core,
Dispatching_Domain => Hard_Real_Time;
is

entry SomeEntry(...); ...
end T;

Although this is a quite difference syntactical form, there is no difference in semantics. With both forms a simple task
declaration:

Example : T(13,3);

would place a task with priority 13 on CPU 3 within the Hard Real Time dispatching domain.
In addition to the above packages an extension to Ada.Interrupts (C.3.2) is made:

with System.Multiprocessors;
function Get_CPU(Interrupt: Interrupt_Id)

return System.Multiprocessors.CPU_Range;

Taken together the above set of facilities will allow multitasking Ada programs to be allocated and scheduled on to a
basic multicore platform in which all cores are identical. Although each dispatching domain (DD) has the same dispatching
(scheduling) rules, there is ample opportunity to program many different paradigms. For example, the range of priorities
could be split between EDF and fixed priority (FP). In one DD only the EDF range is used, in another only the FP range. As
a result, although the overall dispatching strategies are the same in each DD, in effect one DD is totally EDF scheduled (and
could employ, for example, global partitioning) whilst the other is FP (and perhaps uses a fully partitioned approach).

In addition to these facilities that are all focused on the control of task affinities, there is a new task control barrier package
that allows a set of tasks to block on a condition and then be released in parallel. Such a facility is essential for many forms
of data-centric parallelism (for example, a large array being searched by parallel tasks – one per core).

Finally, the definition of Volatile was clarified to enable lock-free synchronisation algorithms to be implemented.

4 Review of Previous Suggestion

Here we review the suggestions that have been voiced at previous workshop, but which are not yet incorporated into
Ada. We distinguish between SMPs and other more general platforms. In both of theses cases one of the issues that remain
significant is the degree to which any of the Ada facilities can be efficiently mapped on to platforms that conform to standards
provided by Posix or Linux. We do not however investigate this issue further here.

4.1 SMP architectures

Two restrictions are apparent with the current proposal to extend the facilities provided in the Ada language for SMP
platforms. One concerns the control over the number of CPUs, the other with control over scheduling. First the issue of the
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number of CPUs and how they might map to dispatching domains. In the facilities described above, the set of CPUs is fixed
and there is a static ‘once and for all’ allocation of CPUs to DDs.

Previously a more abstract API was proposed [11] in which sets of processors are defined with the availability of the CPUs
potentially changing over time:

with Ada.Task_Identification; use Ada.Task_Identification;
package System.Processor_Elements is

Affinity_Error : exception;
Unsupported_Operation : exception;
type Processors is range 0 .. <<implementation-defined>>;

-- The number of processors available on this system.
-- Each processor has a logical Id in the range.
-- On a single processor system, the range is 0..0

type Processor_Set is array(Processors) of Boolean;
-- A set of processors. A boolean set to True, indicates
-- that the logical processor is included in the set

function Available_Processors return Processor_Set;
-- Indicates which of the processors in the system are
-- current available to the program. In some
-- systems this will never change, others it may.

...
end System.Processor_Elements;

A package like this could support a more dynamic platform in which CPUs may alter their availability in a manner that would
allow the programmer to produce adaptable code.

It was mentioned earlier that scheduling on a per-DD basis was consider at an earlier workshop – for example using code
such as [4]:

with System; use System;
package Ada.Dispatching is

Dispatching_Policy_Error : exception;

type Dispatching_Domain_Policy is private.

type Scheme is (Priority_Specific_Dispatching,
Non_Preemptive_FIFO_Within_Priorities,
FIFO_Within_Priorities,
Round_Robin_Within_Priorities,
EDF_ACross_Priorities);

subtype Priority_Specific_Scheme is Scheme range
FIFO_Within_Priorities .. EDF_ACross_Priorities;

procedure Set_Policy(DDP : in out Dispatching_Domain_Policy;
P : Scheme);

procedure Set_Priority_Specific_Policy(
DDP : in out Dispatching_Domain_Policy;
P : Priority_Specific_Scheme;
Low : Priority; High : Priority);

-- raises Dispatching_Policy_Error if
-- DDP has not been set to Priority_Specific_Dispatching, or
-- High is not greater than Low, or
-- any priority from Low to High has already been set

private
-- not defined by language

end Ada.Dispatching;

However it is now not clear that this level of control over dispatching is needed and, as indicated above, sufficient flexibility
can probably be extracted from the current facilities.

To support more stream-based parallelism, Ada 2012 has introduced the task control barrier. However further support is
possible in this area. Ward and Audsley [10] argue for a broadcast primitive (to write to many protected objects in parallel),
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and a new type of function for protected objects (POs). Such a function would have a barrier and hence could be blocked. But
once the barrier is lowered all blocked function calls would proceed in parallel. In effect this would be a high level abstraction
of the task control barrier; in a similar way that an ordinary PO is a more structured form of synchronous task control.

4.2 Non-SMP architectures

Once the hardware platform can no longer be consider to be a pure SMP (where all processors are identical, work at
the same speed and have the same relationship with memory) then many new challenges arise. The follow is a possible
classification of such platform architectures:

• SMP-like – processors are identical but run at different speeds,

• cc-NUMA – cache-coherent Non Uniform Memory Architecture,

• NUMA – no cache coherence, single address space,

• Heterogeneous – multiple address spaces.

What can a future definition of Ada contain to help program applications for these emerging platforms?
For SMP-like, more knowledge about each processor needs to be available to the program. A simple ordering of CPU

is insufficient. Some form of map must be provided and a representation beyond that of a simple integer will probably be
required.

Wellings et al [12] investigated the needs of cc-NUMA. With this architecture, although there is cache coherence, the
time it takes to access memory will vary significantly for different tasks/objects in the program. These access times must be
managed for any real-time system. They concluded that at least four issues must be addressed:

1. understanding the address map,

2. using storage pools to partition the heap,

3. using representation aspects to control object location, and

4. using task affinities to control thread migration.

Once we move beyond cc-NUMA towards heterogenous processors and memory, the problems become more complex.
With a single address space, regions of cache coherence must be identified and have some form of representation in the
program. The partition model within Ada (primarily to support distributed systems) may have a role here. Once we have
multiple address spaces then a ‘distributed systems’ model does seem appropriate. As assessment of the Ada partition model
for such situations is necessary. Extensions may be required.

5 Conclusions

In this paper we have attempted to review all the topics relating to multiprocessor platforms that were raised and discussed
in previous workshops. We note the progress that has been made in the support that Ada now provides. But it is clear that for
non-SMP architectures there are many challenges for any programming language that is attempting to support the production
of efficient and predicable programs. Smart compilers might be able to remove some of these problems, but it is likely that
some abstract representation of the platform will need to be available at the code level.
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Abstract

Although the Ravenscar profile of Ada has achieved a measure of success in the development of high-integrity system, it
is often criticised for not having enough expressive power to deal with common real-time programming patterns. This has
led to a call for more facilities to be added to the profile. These have been turned down by the Ada standardization body for
fear of “feature creep” and the lack of clear and consistent motivation. This paper proposes a coherent profile to support the
construction of fault-tolerant high-integrity real-time programs.

1 Introduction

The success of the Ravenscar profile has resulted in the call for more facilities to be added to the profile [10, 11, 13]. How-
ever, often these facilities do not have an underlying coherent model and have been turned down by the Ada standardization
body for fear of “feature creep”.

The alternative approach to providing a more expressive profile is to start from the computation model that Ravenscar1

was intended to support and to extend that model. A new profile can then be defined to support this new model. In this paper,
we propose an augmented Ravenscar profile whose goal is to support applications that are required to tolerate timing faults
(we define the term TTF-Ravenscar for this profile). The motivations for defining a new profile come from:

• the increased use of multicore platforms in high-integrity systems and the accompanying greater uncertainty that is
present with current timing (schedulability and worst-case execution) analysis for these platforms,

• the desire to use a Ravenscar-like sets of features (i.e. not the full language) to program high-integrity systems that
can identify and respond to faults even if full fault recovery is not possible (as this typically requires use of language
features only available via the full language).

Any new profile should ideally retain the key properties of Ravenscar – that is, its run-time support system should be
small, efficient and potentially certifiable.

The paper is structured as follows. Section 2 discusses our assumptions and presents our fault-tolerance framework within
which programs execute. Section 3 then considers the use of Ravenscar within this framework and identifies where support
is lacking. The TTF-Ravenscar profile is then defined and discussed in section 4. Finally conclusions are drawn.

2 Assumptions

Before suggesting any new profile that addresses fault-tolerance issues, it is important to define the failure assumptions and
the overall framework within which fault tolerance is to be provided. Here, we assume failures in the underlying execution

1In this paper, we will use the term Ravenscar to indicate the subset of Ada that is allowed when conforming to the Ada Ravenscar profile.
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platform (processor, memory and bus) are handled outside of the Ada program, and that they are either masked or result in
the whole system crashing: hence we assume crash failures [5] only. We use the traditional definitions for failures, errors and
faults: failures result from unexpected problems internal to the system which ultimately manifest themselves in the system’s
external behaviour; these problems are called errors and their mechanical or algorithmic cause are termed faults. A fault is
active when it produces an error, until this point it is dormant. Once produced, the error can be transformed into other errors
via the computational progress through the system. Eventually, the error manifests itself at the boundaries of the system
causing a service delivery to fail [3]. This failure, then becomes a fault in any other systems that uses the first system as a
component. The fault-error-failure-fault chain is one of the underlying assumptions of fault-tolerance.

According to the Anderson and Lee framework [1], the provision of software dynamic redundance consists of the following
phases [4, 1].

1. Error detection – A fault will ultimately manifest itself in the form of an error; no fault tolerance scheme can be
utilized until that error is detected.

2. Damage confinement and assessment – When an error has been detected, it is necessary to decide to what extent the
system has been corrupted (this is often called error diagnosis); the delay between a fault occurring and the detection
of the associated error means that erroneous information could have spread throughout the system.

3. Error recovery – Error recovery techniques aim to transform the corrupted system into a state from which it can
continue its normal operation (perhaps with degraded functionality).

4. Fault treatment and continued service – An error is a symptom of a fault; although the damage may have been
repaired, the fault may still exist, and therefore the error may recur unless some form of maintenance is undertaken.

From our perspective, we are concerned with tolerating timing faults. In this case, the above phases can be re-interpreted
as follows [4].

1. Error detection – Most timing faults will eventually manifest themselves in the form of missed deadlines.

2. Damage confinement and assessment – When deadlines have been missed, it is necessary to decide which tasks in
the system are at fault. Ideally, confinement techniques should ensure that only faulty tasks miss their deadlines.

3. Error recovery – The response to deadline misses requires that the application undertakes some forward error recovery.

4. Fault treatment and continued service – Timing errors often result from transient overloads. Hence they can of-
ten be ignored. However, persistent deadline misses may indicate more serious problems and require some form of
maintenance to be undertaken.

The faults that may result in missed deadlines include the following [4]:

• worst-case execution time (WCET) calculations were inaccurate (optimistic rather than pessimistic),

• blocking times were underestimated,

• assumptions made in the schedulability checker were not valid,

• the schedulability checker itself had an error,

• the scheduling algorithm could not cope with a load even though it is theoretically schedulable,

• the system is working outside its design parameters, for example sporadic events occurring more frequently than was
assumed in the schedulability analysis.

Assuming the schedulability analysis is correct, the following chains are possible in the context of priority-based sys-
tems [7]:

1. Fault (in task τi’s WCET calculation or assumptions)→ error (overrun of τi’s WCET)→ error propagation (deadline
miss of τi)→ failure (to deliver service in a timely manner);
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2. Fault (in task τi’s WCET calculation or assumptions)→ error (overrun of τi’s WCET)→ error propagation (greater
interference on lower priority tasks)→ error propagation (deadline miss of lower priority tasks)→ failure (to deliver
service in a timely manner);

3. Fault (in task τi’s minimum inter-arrival time assumptions)→ error (greater computation requirement for τi)→ error
propagation (deadline miss of τi)→ failure (to deliver service in a timely manner);

4. Fault (in task τi’s minimum inter-arrival time assumptions)→ error (greater interference on lower priority tasks)→
error propagation (deadline miss of lower priority tasks)→ failure (to deliver service in a timely manner);

5. Fault (in task τi’s WCET calculation or assumptions when using a shared resource)→ error (overrun of τi’s resource
usage)→ error propagation (greater blocking time of higher priority tasks sharing the resource)→ error propagation
(deadline miss of higher priority tasks)→ failure (to deliver service in a timely manner).

To be tolerant of timing faults, it is necessary to be able to detect:

• miss of a deadline – the final error in all the above error propagation chains;

• overrun of a worst-case execution time – potentially causing the task and/or lower priority tasks to miss their deadlines
(error chains 1 and 2);

• a sporadic event occurring more often than predicted – potentially causing the task and/or lower priority tasks to miss
their deadlines (error chains 3 and 4);

• overrun in the usage of a resource – potentially causing higher priority tasks to miss their deadlines (error chain 5).

Of course the last three error conditions do not necessary indicate that deadlines will be missed; for example, an overrun of
WCET in one task might be compensated by a sporadic event occurring less often than the maximum allowed. Hence, the
damage confinement and assessment phase of providing fault tolerance must determine what actions to take.

The following section will discuss the extent to which Ravenscar can support: error detection mechanisms for the above
timing faults, possible error confinement approaches, and strategies for recovery. Fault treatment typically involves mainte-
nance, which is a topic outside the scope of this paper.

3 Ravenscar and Dynamic Software Fault Tolerance

In section 2, the class of faults that could result in an application missing its deadline were identified. This section first
considers, the Ravenscar facilities that allow the resulting errors to be detected. This is followed by a brief discussion on
damage/error confinement. Finally. the error recovery phase is considered.

3.1 Error detection

From a timing perspective, there are three primitive errors that can result in a deadline miss.

1. WCET (Budget) overrun – Modern multicore processors make accurate and tight WCET analysis extremely difficult.
To reflect this, we will assume that each Ada task has a CPU budget and not be concerned with whether this a worst-
case measure. It will be up to the application to decide how to respond to budget overrun during its error recovery
phase.

Ravenscar supports execution-time clocks but not the Ada.Execution Time.Timers package. Hence, the
only possible approach to detect budget overrun is to poll for it. Clearly, this is very inefficient and, in practice,
the overrun is likely to be detected well after the fact.

2. Overrun of sporadic events – A sporadic event firing more frequently than anticipated can have an enormous impact
on a system attempting to meet hard deadlines. Where the event is the result of an interrupt, the consequences can be
potentially devastating.

Ada has no notion of a release event (job) so any detection of this overrun condition must be provided by the
application. In general, this can be achieved using protected objects and timers as illustrated in Section 13.4.1
of Burns and Wellings [4]. Note that this code is Ravenscar-compliant.
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3. Overrun of worst-case blocking time – In Ada, tasks cannot self-suspend while hold protected object locks. Assuming
the protected-object usage has been accurately determined during the analysis phase, the only way a blocking overrun
can occur is if the budget allocated to each protected action overruns, or blocking has been introduced by the Ada run-
time environment. Support for detecting blocking overruns is traditionally not found in real-time operating systems,
and consequently is not supported by Ada. The error will, therefore, propagate and either a) be transformed into a
budget overrun, or b) go undetected until its affect is lost or c) result in a missed deadline. As an aside, Ada does not
define the task that executes an entry body in a protected object. Hence, calculating the execution time of a protected
procedure, which results in an entry becoming open, may require that entry and (in the general case) several other
entries to be taken into account.
Given no support in Ada, and the catch-all detection capability of a missed deadline, we will not consider this case
further.

The fall-back position for all timing faults is to detect a deadline miss. In Ravenscar, a deadline miss can be detected
by using timers attached to the Real-Time clock.

3.2 Damage confinement

The role of damage confinement of time-related faults is to prevent propagation of the resulting errors to other components
in the system. There are two aspects of this that can be identified.

• Protecting the system from the impact of sporadic task overruns and unbounded aperiodic activities. The problem
of overruns in sporadic objects and unbounded demand on the processor’s time from aperiodic activities is usually
handled by Aperiodic Servers such as Sporadic Servers and Deferrable Servers.

• Supporting composability and temporal isolations. When composing systems of multiple components, whether dynam-
ically or statically, it is often required that each component be isolated from one another. Typically, this is achieved by
hierarchy schedulers and reservation-based systems. Usually, two levels of scheduling are used. A global (top-level)
scheduler and multiple application-level (second-level) scheduler. Usually, the application-level scheduler is also called
called a Server or Execution-time Server or Group Server.

Although the above confinement techniques are similar, they have slightly different emphasis. For temporal isolation, the
key requirement is that the Group Server be guaranteed its budget each period. To support sporadic and aperiodic execution,
it is sufficient that the server consumes no more than its budget each period.

To implement both execution-time servers and aperiodic server typically requires a group budget facility. Raven-
scar does not support the Ada.Execution Time.Group Budget package.

3.3 Error recovery

The greater the accuracy by which the fault and its resulting error can be detected and confined to the errant task, the easier
it is to program recovery. Hence detecting budget overrun in a task indicates that it is that tasks that has the fault. In contrast,
detecting deadline miss in a task does not necessarily mean that task is at fault.

This subsection considers the appropriate strategies for hard (deadlines must be met), soft (deadlines can occasional be
missed and there is still some value in delivering a service late) and firm (deadlines can occasional be missed but there is no
value in delivering a service late).

3.3.1 Strategies for handling budget overrun

Once detected, the task response will depend on whether it is a hard, soft or firm deadline.

Budget overrun in hard real-time tasks One possibility, is that the WCET values used in the schedulability analysis
consists of the addition of two components. The first is the time allocated for the primary algorithm and the second is the
time for recovery (assuming a fault hypothesis of a single failure per task per release). The first time is the time that is used by
the system when monitoring. When this time passes, recovery occurs and the alternative algorithm can be executed. This can
either be within the same task and the budget increased, or by releasing a dedicated recovery task. Typically, these alternative
algorithms try to provide a degraded service. Another possibility is simply to do nothing. This assumes that there is enough
slack in the system for the task (and other lower priority tasks) to still meet their deadlines.
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Budget overruns in soft/firm real-time tasks Typically overruns in soft and firm real-time tasks can be ignored if the
isolation techniques guarantee the capacity needed for the hard real-time tasks. Alternatively, the tasks priorities can be
lowered, or the current releases can be terminated and the tasks re-released when their next release event occurs.

3.3.2 Strategies for handling sporadic event overruns

There are several responses to the violation of minimum inter-arrival time of a sporadic task: the release event can be ignore,
an exception can be raised, the last event can be overwritten, (if it has not already been acted upon) or the actual release of
the thread can be delayed until the MIT2 has passed. Of course, the violation could be ignored and the task release allowed.

3.3.3 Strategies for handling deadline misses

Although the early identification of potential timing problems facilitate damage assessment, many real-time systems just
focus on the recovery from missed deadlines. Several strategies are possible.

Deadline miss of hard real-time tasks – Again it is possible to set two deadlines for each task. An early deadline whose
miss will cause the invocation of forward or backward error recovery. A later deadline is the deadline used by the schedula-
bility test. In both cases, the recovery should aim to produce a degraded service for the task.

Deadline miss of soft real-time task – Typically this can be ignored and treated as a transient overload situation. A count
of missed deadlines can be maintained, and when it passes a certain threshold a health monitoring system can be informed.

Deadline miss of a firm real-time task – As a firm task produces no value passed its deadline, its current release can be
terminated. A count of terminated release can be maintained, and when it passes a certain threshold a health monitoring
system can be informed.

3.3.4 Mode changes and event-based reconfiguration

In the above discussions, it has generally been assumed that a missed deadline and other timing errors can be dealt with by
the task that is actually responsible for the problem. This is not always the case. Often the consequences of a timing error are
as follows.

• Other tasks must alter their deadlines or even terminate what they are doing.

• New tasks may need to be started.

• Critically important computation may require more processor time than is currently available; to obtain the extra time,
other less significant tasks may need to be ‘suspended’.

• Tasks may need to be ‘interrupted’ in order to undertake one of the following (typically):

– immediately return their best results they have obtained so far;

– change to quicker (but presumably less accurate) algorithms;

– forget what they are presently doing and become ready to take new instructions: ‘restart without reload’.

These actions are sometimes known as event-based reconfiguration.
Some systems may additionally enter anticipated situations in which deadlines are liable to be missed. A good illustration

of this is found in systems that experience mode changes. This is where some event in the environment occurs which results
in certain computations that have already been initialized, no longer being required. If the system were to complete these
computations then other deadlines would be missed; it is thus necessary to terminate prematurely the tasks that contain the
computations.

To perform event-based reconfiguration and mode changes requires communication between the tasks concerned. Due
to the asynchronous nature of this communication, it is necessary to use the asynchronous notification mechanisms. Any
reconfiguration may also require tasks to be moved between processors in order to balance the load.

2Minimum Inter-arrival Time.

Ada Letters, April 2013 19 Volume XXXIII, Number 1



3.3.5 Ravenscar and error recovery

There are several common techniques that are used to implement the above error-recovery strategies

1. Reduce the priority of the task to a priority level where it will not jeopardize the execution of other tasks.

Ravenscar does not support the Ada.Dynamic Priorities package.

2. Move a task from one processor to another.

Ravenscar does not support the System.Multiprocessor package, and its associated aspects.

3. Suspend the task completely.

Ravenscar does not support the Ada.Asynchronous Task Control package.

4. Start a new task.

Ravenscar does not support the dynamic creation of tasks, so all tasks must be created during the initialization
phase. They can then queue on a mode changer (error recovery) protected object waiting for their mode to be-
come active. Unfortunately, multiple tasks cannot be placed on the same entry queue. This results in obfuscated
code, the problem is compounded by Ravenscar not supporting multiple entries in the same protected objects.

5. Request an asynchronous transfer of control in the task and then, possibly, also change its priority level.

Ravenscar does not support the select-then-abort facility.

6. Terminate the current release (job) of the task and allow it to start afresh at the next release.

Ada does not recognise the notion of releases. Hence there are no direct facilities to allow this. It has to be
implemented by the program. The only way to do this would be to poll for the termination request.

4 Supporting a TTF-Ravenscar Profile

To make it worthwhile to define a new profile, there must be a clear application need, a computational model that reflect
this need, and an implementation strategy that leads to a run-time footprint significantly smaller than that needed by the full
language. Earlier is this paper we have attempted to define a need (to tolerate timing faults) and a set of facilities that together
form a coherent model whilst still requiring a run-time footprint much closer to Ravenscar than the full Ada language.

However, to be successful, any proposed new profile must also be easily implementable on a wide range of current
operating system. In the past, we have always used the POSIX standard as our measure of wide-spread support. However,
the POSIX standards have been a bit slow responding to the increase in use of multicore/multiprocessor platforms. For this
reason, we use Linux (and its various patches) as our measure.

4.1 Linux support relevant to the proposed profile

Linux was never designed to support real-time systems. Early versions of the Linux kernel were non-preemptible i.e. any
task running inside a kernel (or a kernel driver) needed to finish its execution before anything else was allowed to execute [12].
Linux 2.0 supported symmetric multiprocessors by using a single spin lock (the big kernel lock) which allowed only one task
to be running kernel code at one time. Later, locks were distributed based on critical regions rather than having a single lock
for the whole kernel. However, any task inside the critical region was still non-preemptible and response times were still very
high. The realtime-preempt patch was included in the mainline kernel in Linux 2.6.183 as a configuration option; it tries to
minimize the amount of non-preemptible code.

On multiprocessors, ideally the OS should provide support for different scheduling policies from fully partitioned to global
scheduling. In Linux, each processor has its own run queue. Once a thread is allocated to a processor it stays in its run queue
until it is either moved to another processor by changing its affinity or through load balancing. Although Linux does not have
a single queue for multiple processors for true global scheduling, however, it uses load balancing on real time tasks to make
sure that the highest priority threads present in all the run queues are running at any particular instant of time [2]. When there
is more than one real time thread in a run-queue, the lower priority real time thread is migrated to a CPU on which it can run.
This migration happens at the following events:

3http://www.Linuxfordevices.com/c/a/News/Linux-kernel-gains-new-realtime-support/
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1. a real time thread becomes schedulable, however, it finds a higher priority thread already running in the run-queue on
which it has been allocated. In such a case it is pushed to another run queue where it can run;

2. when a task is suspended (or completes) on one processor (processor A), and a task exists in the run queue of another
processor (processor B) with a higher priority than the highest priority in processor A’s queue, the kernel pulls the
higher priority task from B’s queue to A’s queue, and the higher priority task is dispatched.

However, the migration does respect the affinities of the tasks and any such migrations are not allowed where the CPU is out
of the affinity set of the task.

In Linux, control groups [9] provide a mechanism to partition groups of tasks and then manage resources allocated to each
partition. Control group (cgroup) is a file system, where tasks can be added and then be arranged hierarchically. By default
all tasks belong to the root cgroup. Each resource (CPU, memory etc.) has an associated controller which limits resources to
tasks based on the cgroup they belong to.

Building the mainline kernel by enabling the CONFIG RT GROUP SCHED option, provides the support for real-time
group scheduling. The real-time group scheduling can be used along with the cgroup filesystem to provide group budget
for a set of tasks(process/threads). The real time group scheduling allows explicit allocation of CPU bandwidth to task
groups [6]. The bandwidth can be set by the following two parameters

1. cpu.rt runtime us to set the budget of the task group

2. cpu.rt period us to set the period of the task group

In every period T , the group is allocated the budget. Once the budget expires, the group is blocked until the arrival of the
next period. In Linux, the scheduler scheduler tick function is called periodically after a time period T which is called
by a high resolution timer. This function maintains the different CPUs accounting parameters and checks for budget ex-
haustion. On each scheduling event (at the scheduler tick, task deactivation, task pre-emption) the collective execution
times of all tasks are compared to the budget value until it exceeds the budget at which point all tasks are descheduled.

A sporadic server patch has also been presented in [8] with minimum changes to the real-time group scheduling of Linux.
The changes mainly involve behaviour of threads; instead of blocking, threads are re-entered in a lower priority queue once
the budget has expired. It also makes changes to how the budget is replenished after each period.

4.2 The proposed TTF-Ravenscar profile

In section 3, several Ada facilities were needed that were not available in the Ravenscar. In this section, we discuss the
feasibility of an augmented Ravenscar profile and whether the added functionality is supported by Linux.

Multiprocessor and Multiprocessors.Dispatching Domains

These two Ada packages allow the affinity of a task to be set to a dispatching domain. To be in keeping with Ravenscar,
we propose the following restrictions.

• No dispatching domains can be created by the program.

• Each task, including the environment task, should be set to run on a single CPU (using the Set CPU subprogram).

• A program can explicitly move a task from one processor to another4.

• Each interrupt handler should only run on a single processor – but this may not be under the control of the program.

We note that Linux can support all of these facilities with its CPU affinity API that has been available since Kernel version
2.5.8.

4The circumstances in which this is allowed could be restricted.
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Ada.Execution Time.Timers

This package essentially allows event handlers (protected procedures) to be executed when the amount of CPU time a
task has consumed reaches a specified value. The handler is run by the underlying clock/timer interrupt handler on the
processor(s). Only one handler per task is needed.

Linux supports the POSIX CPU clocks and timers facilities, which can be used to implement this facility.

Ada.Execution Time.Group Budgets

Group budgets are challenging to implement, particularly on a multicore platform. Consequently, to simplify the support,
we suggest that group budgets can only be set for tasks that reside on the same processor.

The nearest functionality in this area, which is provided by mainstream operating systems, is the support for sporadic
servers. Linux also support the notion of control groups, as described in Section 4.1.

Ada.Dynamic Priorities

Adding dynamic priorities would undermine the static nature of Ravenscar. However, they are a valuable tool for error
confinement and recovery.

If dynamic priorities are supported, then either ceiling must be set to the ceiling of the ceilings for all priority settings, or
the dynamic ceilings must be included in the new profile.

Ada.Asynchronous Task Control

Although asynchronous task control would add significant expressive power to the profile, we have concerns over its
widespread support by Ada vendors. As far as we are aware, no one implements this package. The problem is that it is
difficult to get the required semantics without the underlying OS providing a base priority level that will guarantee that no
progress is made by the task. The Ada semantics are defined in terms of dynamic priorities, and consequently supporting
dynamic priorities would obviate the need for asynchronous task control.

Entry queues or multiple entries

Having more flexible support for protected objects would make some programs much easier to implement, including
support for mode change algorithms. At a minimum, having a single entry but multiple tasks queued (or multiple entries but
with only one task allowed to queue) is required.

The select-then-abort statement

Any error recovery that requires a task to have asynchronous transfer of control requires use of the select-then-abort
statement. The semantics of this language facility, even in a restricted tasking model, are still complex (as, in effect, threads
can be aborted), and the run-time facilities are likely to lead to a footprint comparable with that required by the full language.
We feel that support for this is a step too far for a restricted high-integrity profile. Full fault tolerance requires the full
language.

5 Conclusions

Although pragma Restrictions allows an Ada program to specify a restricted use of the language, it does not guaran-
tee the provision of a simplified run-time system; however, this is encourage by the language’s reference manual (Section 2.7,
par 21). By specifying a predefined profile, the Ada language signals a stronger intention that an appropriate subset of the
run-time system should be developed. The profile identified in this paper can be specified using the current Restrictions
pragma but this would not have the desired effect. Hence, we recommend the definition of a new profile whose goal is to
support the implementation of fault-tolerant high-integrity real-time programs. In short, this TTF-Ravenscar profile would
be defined to be Ravenscar plus (or modified by):
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1. Ability to change a task affinity at run-time (use of Set CPU).

2. Use of Timers – one per task.

3. Use of Group Budgets – tasks on same CPU

4. Dynamic Priorities – or possible. Ada.Asynchronous Task Control.

5. Entry queues for protected objects – or multiple single-task queues per PO.
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Abstract

This paper presents a definition of a Ravenscar-like profile (EDF Ravenscar) that incorporates EDF scheduling. Rather
than just replace the dispatching policy, an argument is made for simplifying the support that is provided in full Ada for
controlling access to protected objects. As a result all tasks and protected objects have their default priorities, and only one
ready queue is needed (ordered by absolute deadline). The paper also outlines the static scheduling analysis that can be
applied to applications conforming to the profile.

1 Introduction

Earliest deadline first (EDF) is a popular scheduling paradigm as it has been proven to be the most efficient scheme
available on monoprocessors. If a set of tasks, on a single processor, is schedulable by any dispatching policy then it will also
be schedulable by EDF. To support EDF requires two language features (now supported in Ada 2005):

• representation of the deadline for a task,

• representation of the preemption level for a protected object.

The first is obviously required; the second is the EDF equivalent of the priority ceiling protocol and allows protected
objects to be ‘shared’ by multiple tasks [1] (see Section 2.1). The support for the second requirement does however give rise
to a more complex set of language rules and implementation. This complexity may not be compatible to a Ravenscar-like
profile.

The Ravenscar run-time profile [6, 5, 14, 12, 11] is an important feature of the Ada language, it allows simple real-time
systems to be analysed and implemented on a run-time system that is itself simple, small and efficient – and is capable of being
engineering to the highest level of integrity. The profile, whose definition was developed and refined in previous workshops
of the IRTAW series, is defined in Ada 2005 via a collection of restrictions on the full Ada language. It is defined to support
applications that have a fixed set of tasks scheduled by the fixed priority scheme - known as FIFO Within Priority in
Ada. Ravenscar is designed to be used by those applications that have tight timing requirements and high integrity (eg. safety
critical) constraints.

For some high integrity applications, however, the extra performance that can be obtained from utilising EDF scheduling1

is significant, and hence the motivation to define a profile similar to Ravenscar but with its fixed priority dispatching scheme
replaced by EDF dispatching. Unfortunately the level of simplicity required of any Ravenscar-like profile does not necessarily
mean that full EDF scheduling is necessary or desirable. In this paper we indeed argue that a restricted model is needed for,
what we term in this paper, the EDF Ravenscar run-time profile.

The paper is organised as follows. First, in the following section, we outline the support that Ada 2005 gives for EDF
scheduling. In section 3, the scheduling analysis for EDF-based systems is reviewed. The issues raised in these two sections
leads to a restricted definition of an EDF-based run-time profile. This is described in Section 4. Finally conclusions are given
in Section 5.

1EDF scheduling can be up to 1.763 times more efficient than fixed priority scheduling when preemptive dispatching is employed. That is, a system that
is schedulable with EDF might need a processor running 1.763 times faster to be schedulable with fixed priority dispatching [9].
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2 Ada’s Support for EDF scheduling

In this section we note the provisions available in Ada 2005 for programming EDF-scheduled systems. As indicated
earlier, to support EDF requires two language features:

• representation of the deadline for a task,

• representation of preemption level for a protected object.

A predefined package provides support for deadlines:
with Ada.Real_Time; with Ada.Task_Identification;
package Ada.Dispatching.EDF is
subtype Deadline is Ada.Real_Time.Time;
Default_Deadline : constant Deadline :=

Ada.Real_Time.Time_Last;
procedure Set_Deadline(D : in Deadline;

T : in Ada.Task_Identification.Task_ID :=
Ada.Task_Identification.Current_Task);

procedure Delay_Until_And_Set_Deadline(
Delay_Until_Time : in Ada.Real_Time.Time;
Deadline_Offset : in Ada.Real_Time.Time_Span);

function Get_Deadline(
T : Ada.Task_Identification.Task_ID :=
Ada.Task_Identification.Current_Task)
return Deadline;

end Ada.Dispatching.EDF;

These facilities are easily used to program behaviors such as periodic tasks [7]. The basic semantics of EDF scheduling is
that the task with the most urgent (earliest) deadline is the one chosen for execution. This task will remain executing until it
either completes (and delays for its next release) or is preempted by the release of a task with a shorter absolute deadline.

We now turn to the second requirement. This concerns the use of shared protected objects between tasks executing under
EDF rules.

2.1 Preemption Levels and Baker’s Protocol

With standard fixed priority scheduling, priority is actually used for two distinct purposes:

• to control dispatching

• to facilitate an efficient and safe way of sharing protected data.

The latter is known as the priority ceiling protocol. In Baker’s stack-based protocol two distinct notions are introduced for
these policies[1]:

• earliest deadline first to control dispatching2,

• preemption levels to control the sharing of protected data.

With preemption levels (which is a very similar notion to priority) each task is assigned a static preemption level, and each
protected object is assigned a ceiling value that is the maximum of the preemption levels of the tasks that call it. At run-time
a newly released task, τ1,can preempt the currently running task, τ2, if and only if the:

• absolute deadline of τ1 is earlier (i.e. sooner) than deadline of τ2, and the

• preemption level of τ1 is higher than the preemption of any locked protected object.

With this protocol it is possible to show that mutual exclusion (over the protected object on a single processor) is ensured by
the protocol itself (in a similar way to that delivered by fixed priority scheduling and ceiling priorities). Baker also showed,
for the classic problem of scheduling a fixed set of periodic tasks, that if preemption levels are assigned according to each
task’s relative deadline then a task can suffer at most a single block from any task with a longer deadline. Again this result
is identical to that obtained for fixed priority scheduling. Note for this property to hold, preemption levels must be assigned
inversely to relative deadline (ie. the smaller the relative deadline, the higher the preemption level).

2His paper actually proposes a more general model of which EDF dispatching is an example.
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2.2 Supporting EDF Preemption Levels in Ada

Ada 95 did not support EDF scheduling but new facilities were added to Ada 2005; and it was desirable for fixed priority
and EDF scheduling to work together. To this end the Ada 2005 definition did not attempt to define a new locking policy but
uses the existing ceiling locking rules without change. Priority, as currently defined, is used to represent preemption levels.
EDF scheduling is defined by a new dispatching policy.
pragma Task_Dispatching_Policy(EDF_Across_Priorities);

The basic preemption rule given earlier for Baker’s protocol, whilst defining the fundamental behaviour, does not give a
complete model. For example, it is necessary to define what happens to a newly released task that is not entitled to preempt.
A complete model, within the context of Ada’s ready queues, is defined by the following rules (see paragraphs 17/2 to 28/2
of section D.2.6 of the Ada 2005 Reference Manual).

When EDF Across Priorities is specified for priority range Low..High all ready queues in this range are ordered by
deadline. The task at the head of a queue is the one with the earliest deadline.

A task dispatching point occurs for the currently running task T to which policy EDF Across Priorities applies:

• when a change to the deadline of T occurs;

• there is a task on the ready queue for the active priority of T with a deadline earlier than the deadline of T; or

• there is a non-empty ready queue for that processor with a higher priority than the active priority of the running task.

In these cases, the currently running task is said to be preempted and is returned to the ready queue for its active priority.
For a task T to which policy EDF Across Priorities applies, the base priority is not a source of priority inheritance; the

active priority when first activated or while it is blocked is defined as the maximum of the following:

• the lowest priority in the range specified as EDF Across Priorities that includes the base priority of T;

• the priorities, if any, currently inherited by T;

• the highest priority P, if any, less than the base priority of T such that one or more tasks are executing within a protected
object with ceiling priority P and task T has an earlier deadline than all such tasks and all other tasks on ready queues
with priorities strictly less than P.

When a task T is first activated or becomes unblocked, it is added to the ready queue corresponding to this active priority.
Until it becomes blocked again, the active priority of T remains no less than this value; it will exceed this value only while it
is inheriting a higher priority.

When the setting of the base priority of a ready task takes effect and the new priority is in a range specified as EDF Across Priorities,
the task is added to the ready queue corresponding to its new active priority, as determined above.

In addition, there is a rule (paragraph 30/2 of section D.2.6) that no protected object can have a ceiling of value Low –
when EDF Across Priorities is specified for priority range Low..High.

2.3 Implications for EDF Ravenscar

The virtue of the current language definition is that it works with the Ada 95 definition of protected objects and the
Ceiling Locking protocol. It also allows mixed systems (of EDF and fixed priority scheduled tasks) to be programmed
where protected objects can be shared between tasks in the two dispatching worlds. However, the protocol is complex.
Evidence of this comes from the fact that language definition itself had to be modified due to a problem with the first
approach [16] and that early implementations have also had difficulties with the protocol. It is hard to test all possible
interactions (of tasks with different preemption levels arriving at different times and with various protected objects themselves
making calls upon each other). Also the overheads at run-time are not low. The arrival of a task may require a number of
ready queues to be checked.

The implication is therefore: the full EDF facility, in terms of its support for a general model of Baker’s algorithm, is too
complex for a Ravenscar-like profile for safety critical applications. Overheads are not insignificant and proof of correctness
may be expensive to obtain.
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3 Analysis for EDF Scheduling

First the standard means of analysing EDF scheduled systems is described. This can be used with the proposed EDF Ravenscar
Profile.

3.1 System Model

We use a standard system model in this paper, incorporating the preemptive scheduling of periodic and sporadic task
systems. A real-time system, A, is assumed to consist of N tasks (τ1 .. τN ) each of which gives rise to a series of jobs that
are to be executed on a single processor. Each task τi is characterized by several parameters:

• A period or minimum inter-arrival time Ti; for periodic tasks, this defines the exact temporal separation between
successive job arrivals, while for sporadic tasks this defines the minimum temporal separation between successive job
arrivals.

• A worst-case execution time Ci, representing the maximum amount of time for which each job generated by τi may
need to execute. The worst-case utilization (Ui) of τi is Ci/Ti. The total utilisation of the task set in denoted by U ,
with U =

∑N
i=1 Ci/Ti.

• A relative deadline parameter Di, with the interpretation that each job of τi must complete its execution within Di

time units of its arrival. In this analysis we assume Di ≤ Ti. The absolute deadline of a job from τi that arrives at time
t is t+Di.

Once released, a job does not suspend itself. We also assume, initially, that tasks are independent of each other and hence
there is no blocking term to be incorporated into the scheduling analysis. This term will be included shortly – in Section 3.3.

There are no restrictions on the relative release times of tasks (other than the minimum separation of jobs from the same
task). Hence we assume all tasks start at the same instant in time – such a time-instant is called a critical instant for the task
system[13]. In this analysis we assume tasks do not experience release jitter.

3.2 Processor-Demand Analysis

Processor-Demand Analysis (PDA) [4, 3] considers the entire task system in one sequence of tests. It uses the property of
EDF that at any time t only jobs that have an absolute deadline before t need to execute before t. So the test takes the form
(the system start-up is assumed to be time 0):

∀t > 0 : h(t) ≤ t (1)

where h(t) is the total load/demand on the system (all jobs that have started since time 0 and which have a deadline no greater
than t). A simple formulae for h(t) is therefore (for D ≤ T ):

h(t) =
N∑
j=1

⌊
t+ Tj −Dj

Tj

⌋
Cj (2)

The need to check all values of t is reduced by noting that only values of t that correspond to job deadlines have to be
assessed. Also there is a bound on t. An unschedulable system is forced to fail inequality (1) before the bound L. A number
of values for L have been proposed in the literature, here we give two. First is the synchronous busy period [8, 15] which is
denoted here by LB . It is calculated by forming a similar recurrence relationship to that used for response time analysis for
fixed priority systems:

sm+1 =
N∑
i=1

⌈
sm

Ti

⌉
Ci (3)

The recurrence stops when sm+1 = sm, and then LB = sm. Note that the recurrence cycle is guaranteed to terminate if
U ≤ 1 for an appropriate start value such as s0 =

∑N
i=1 Ci.
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If the system utilization (U ) is strictly less than 1 then a simpler formulae for L is possible [10]:

LA = Max

{
D1, ..., Dn

∑N
j=1(Tj −Dj)Uj

1− U

}
(4)

Either formulation for L can be used (or the minimum of the two values).
With all available estimates for L there may well be a very large number of deadline values that need to be checked using

inequality (1) and equation (2). This level of computation has been a serious disincentive to the adoption of EDF scheduling
in practice. Fortunately, a new much less intensive test has recently been formulated [17]. This test, known as QPA (Quick
Processor-demand Analysis), starts from time L and integrates backwards towards time 0 checking a small subset of time
points. These points are proved [17] to be adequate to provide a necessary and sufficient test.

A version of the QPA algorithm [18] optimised for efficient implementation is encoded in the following pseudo code in
which D min is the smallest relative deadline in the system, and Gap is the common divisor of the computation times and
deadlines. The value of Gap is such that no two significant points in time (eg interval between two adjacent deadlines) is less
than Gap. For example, if all task parameters are given as arbitrary integers then Gap will have the value 1.

t := L - Gap
while h(t) <= t and t >= D min loop

t := h(t) - Gap
end loop
if t < D min then

-- task set is schedulable
else

-- task set is not schedulable
end if;

In each iteration of the loop a new value of t is computed. If this new value is less than the computed load at that point,
the task set is unschedulable. Otherwise the value of t is reduced during each iteration and eventually it must become smaller
than the first deadline in the system and hence the system is schedulable.

Theorem 1 ([17]) A general task set is schedulable if and only if U ≤ 1, and the iterative result of the QPA algorithm is
s ≤ Dmin where Dmin is the smallest relative deadline of the task set.

It is also possible to undertake sensitivity analysis via QPA [19].

3.3 Incorporating Blocking

The above analysis assumes that tasks are independent. If tasks interact via protected objects (PO) then a task can be
delayed not just by tasks with shorter absolute deadlines, but also by tasks that are executing within a PO. For fixed priority
systems the blocking times are static values that are easily computed once task and ceiling priorities have been assigned and
the use-pattern (of tasks and POs) is known.

For EDF scheduling the basic processor demand inequality (1) becomes [15, 2]

∀t > 0 : h(t) + b(t) ≤ t (5)

where b(t) is the maximum blocking that any task can suffer at time t. It must be recomputed each time the equation is
applied.

3.4 Implications for EDF Ravenscar

With fixed priority scheduling a task τi can be blocked by the existence of a PO that is used both by a task with a lower
priority, and a task with a high or equal priority (to that of τi). For EDF the situation is much more complex, the blocking
relation changes with time. Two tasks that share a PO will, at different times, block each other. Even a task with the shortest
relative deadline that does not access a PO may suffer blocking.

The implications are therefore that all tasks may suffer blocking and that in many situations the blocking terms are of
similar magnitude. To try and compute the exact values (for use in equation 5) may therefore be error-prone and not of great
utility.
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4 An EDF Version of the Ravanscar Run-Time Profile

The definition of the new profile, EDF Ravenscar, clearly needs access to the Ada. Dispatching.EDF package.
It can designate EDF dispatching by use of the pragma:

pragma Task_Dispatching_Policy(EDF_Across_Priorities);

This implies that all priority levels (if used) are subject to EDF dispatching. In particular the ‘Low’ parameter used in the
definition of the locking protocol (see Section 2.2) has the value Priority’First.

From the consideration of the implications of the Ada model (see Sections 2.3 and 3.4), this paper concludes that the full
Ada 2005 language facilities for EDF scheduling is not compatible with a Ravenscar-like profile. The implications of this is
that a simpler relationship between tasks and protected objects is required.

Fortunately this can be obtained with a straightforward restriction to the general model. If all tasks have the same preemp-
tion level, and all POs have a ceiling level above this value then in effect protected subprograms become non-preemptive. All
runnable tasks are on a single ready queue (at priority Priority’first). If when a task is released the current task is
executing in a PO then the released task will be placed in this ready queue (at the position dictated by its absolute deadline).
A released task will never preempt a task executing in a PO. If however the current task is executing outside of a PO then a
simple comparison of absolute deadlines will determine which task then executes.

The resulting run-time behaviour is straightforward, the implementation can be efficient, and be open to formal proof. The
drawback is that blocking may be more than would otherwise occur. But as noted earlier, this may be a small impact with
EDF as blocking is more evenly encountered.

To prevent the use of preemption levels and different PO ceilings it is sufficient to simply ban the use of the priority
pragma and the use of the dynamic priorities package (which is already outside of the Ravenscar provisions). If tasks cannot
specify their priorities then all tasks will be assigned the default priority of Default Priority. Moreover, all protected
objects will be assigned the ceiling priority of Priority’ Last. As a result, with EDF Within Priority dispatching
there is only one ready queue (at priority Priority’First); it is ordered by the absolute deadline of the tasks. Only an
executing task can be ‘inside’ a PO – and the executing task is not on a ready queue.

To analyse an application executing under EDF Ravenscar the processor-domain equation is modified as follows:

∀t > 0 : h(t) +B ≤ t (6)

where B is the maximum execution time of any protected subprogram.
It is possible to postulate more exact analysis, for example taking into account those task that could be executing at time t,

but equation (6) provides a simple yet effective basis for analysis (when combined with the QPA approach outlined earlier).

4.1 Full Definition

For completeness the full definition of the proposed profile is now given. First, a new restriction is required to prevent the
use of the Priority pragma (or its equivalent aspect): No Specified Priorities. The definition of EDF Ravenscar
is thus:

pragma Task_Dispatching_Policy (EDF_Across_Priorities);
pragma Locking_Policy (Ceiling_Locking);
pragma Detect_Blocking;
pragma Restrictions (

No_Specified_Priorities,
No_Abort_Statements,
No_Dynamic_Attachment,
No_Dynamic_Priorities,
No_Implicit_Heap_Allocations,
No_Local_Protected_Objects,
No_Local_Timing_Events,
No_Protected_Type_Allocators,
No_Relative_Delay,
No_Requeue_Statements,
No_Select_Statements,
No_Specific_Termination_Handlers,
No_Task_Allocators,

Ada Letters, April 2013 29 Volume XXXIII, Number 1



No_Task_Hierarchy,
No_Task_Termination,
Simple_Barriers,
Max_Entry_Queue_Length => 1,
Max_Protected_Entries => 1,
Max_Task_Entries => 0,
No_Dependence => Ada.Asynchronous_Task_Control,
No_Dependence => Ada.Calendar,
No_Dependence => Ada.Execution_Time.Group_Budget,
No_Dependence => Ada.Execution_Time.Timers,
No_Dependence => Ada.Task_Attributes);

5 Conclusions

The Ravenscar profile has proved to be an important aspect of the Ada language. It has been widely adopted by researchers,
implementers and practitioners. One key feature of Ravenscar is its use of fixed priority dispatching – a mature scheduling
approach with significant support analysis.

The main alternative to fixed priority scheduling is EDF (Earliest Deadline First); this scheme is more efficient (in terms
of processor utilization) but has only recently become a mainstream technology appropriate to high integrity applications.
To capitalize on these developments this paper has argued that an EDF-based version of the Ravenscar profile be defined
for Ada. In producing this, a simplified run-time behaviour is defined. By restricting the use of the Priority pragma,
protected operations become, in effect, non-preemptive, and only one ready queue is needed in the run-time. Some small loss
of performance may result, but this is balanced by a reduction in the run-time overheads and complexity. Future work will
attempt to measure this performance degradation.

References

[1] T.P. Baker. Stack-based scheduling of realtime processes. Journal of Real-Time Systems, 3(1), March 1991.

[2] S.K. Baruah. Resource sharing in EDF-scheduled systems: A closer look. In Proceedings of IEEE Real-Time Systems
Symposium (RTSS), pages 379–387, 2006.

[3] S.K. Baruah, R.R. Howell, and L.E. Rosier. Feasibility problems for recurring tasks on one processor. Theorectical
Computer Science, 118:3–20, 1993.

[4] S.K. Baruah, A.K. Mok, and L.E. Rosier. Preemptive scheduling of hard real-time sporadic tasks on one processor. In
Proceedings of IEEE Real-Time Systems Symposium (RTSS), pages 182–190, 1990.

[5] A. Burns. The Ravenscar Profile. ACM Ada Letters, XIX(4):49–52, Dec 1999.

[6] A. Burns, B. Dobbing, and G. Romanski. The Ravenscar tasking profile for high integrity real-time programs. In
Reliable Software Technologies, Proceedings of the Ada Europe Conference, Uppsala, pages 263 – 275. Springer Verlag,
1998.

[7] A. Burns and A. J. Wellings. Real-Time Systems and Programming Languages. Addison Wesley Longman, 4th edition,
2009.

[8] I. Ripoll A. Crespo and A.K. Mok. Improvement in feasibilty testing for real-time tasks. Journal of Real-Time Systems,
11(1):19–39, 1996.

[9] R.I. Davis, T. Rothvo, S. . Baruah, and A. Burns. Exact quantification of the sub-optimality of uniprocessor fixed
priority pre-emptive scheduling. Journal of Real Time Systems, 43(3):211–258, Nov 2009.

[10] H. Hoang, G.C. Buttazzo, M. Jonsson, and S. Karlsson. Computing the minimum EDF feasible deadline in periodic
systems. In RTCSA, pages 125–134, 2006.

[11] ISO/IEC. Information technology - programming languages - guide for the use of the Ada Ravenscar Profile in high
integrity systems. Technical Report TR 24718, ISO/IEC, 2005.

Ada Letters, April 2013 30 Volume XXXIII, Number 1



[12] M. Kamrad and B. Spinney. An Ada runtime system implementation of the Ravenscar profile for high speed application-
layer data switch. In Reliable Software Technologies, Proceedings of the Ada Europe Conference, Santander, pages
26–38. Springer Verlag, 1999.

[13] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a hard real-time environment. JACM,
20(1):46–61, 1973.

[14] K. Lundqvist, L. Asplund, and S. Michell. A formal model of the Ada Ravenscar tasking profile; protected objects. In
Reliable Software Technologies, Proceedings of the Ada Europe Conference, Santander, pages 12–25. Springer Verlag,
1999.

[15] M. Spuri. Analysis of deadline schedule real-time systems. Technical Report 2772, INRIA, France, 1996.

[16] A. Zerzelidis, A. Burns, and A.J. Wellings. Correcting the EDF protocol in Ada 2005. In Proceedings of IRTAW 13,
Ada Letters, XXVII(2), pages 18–22, 2007.

[17] F. Zhang and A. Burns. Schedulability analysis for real-time systems with EDF scheduling. IEEE Transaction on
Computers, 58(9):1250–1258, 2008.

[18] F. Zhang and A. Burns. Improvement to quick processor-demand analysis for EDF-scheduled real-time systems. In
Proceedings of the 21st Euromicro Conference on Real-Time Systems (ECRTS), pages 76–86, 2009.

[19] F. Zhang, A. Burns, and S.K. Baruah. Sensitivity analysis for EDF scheduled arbitrary deadline real-time systems. In
Proceedings of 16th IEEE Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA),
pages 61–70, 2010.

Ada Letters, April 2013 31 Volume XXXIII, Number 1



Ada 2012: Resource Sharing and Multiprocessors

S. Lin and A.J. Wellings∗ and A. Burns
Department of Computer Science, University of York, York,YO10 5GH, UK

(charlie,andy,burns)@cs.york.ac.uk

Abstract

As from Ada 2005, the language has supported different dispatching policies including fixed priority (FP) and earliest-
deadline first (EDF). EDF dispatching can be applied across the whole range of priorities or across a restricted range.
In this way, EDF scheduling is integrated into a FP framework. Baker’s Stack Resource Policy (SRP) is also integrated
with Ada’s immediate priority ceiling protocol to support resource sharing using protected objects. However, with the
introduction of support for global, partitioned and cluster scheduling for multiprocessor systems, the use of protected objects
in applications needs to be re-evaluated. This is because Ada does not completely define how protected objects are accessed
in a multiprocessor environment and because the SRP cannot be directly applied to multiprocessors.

This paper reviews the currently available multiprocessor resource allocation policies and analyzes their applicability to
Ada. It proposes some new Ada mechanisms that would facilitate the programming of a variety of protected object access
protocols.

1 Introduction

Ada 2012 provides more support for multiprocessor systems than previous versions of the language. However, issues
surrounding the use of protected objects are still, to a large extent, implementation defined. This is mainly because there are
no agreed standards for the best way to access resources in a multiprocessor environment.

In this paper, we first review the multiprocessor resource control protocols that have been proposed in the literature. We
then review Ada’s support for multiprocessors focusing on the issue of accessing protected objects. From these reviews, we
summarize the main characteristics of the protocols in the context of Ada to determine their compatibility with Ada 2012. We
consider both global, partitioned and cluster systems, and fixed priority (FP) and earliest-deadline first (EDF) dispatching.
We then propose some new functionality to the language which would help the programmer implement their own protected
object access protocols.

2 Multiprocessor Resource Control Protocols

Resource control policies for single processor systems are well understood. In particular:

• Priority Inheritance Protocol (PIP) – defined for preemptive fixed priority-based (FP) systems but also can be used with
any system with static task-level measures of execution eligibility.

• Priority Ceiling Protocol (PCP) – defined for FP systems but also can be used with any system with static task-level
measures of execution eligibility.

• Nonpreemptive Critical Sections (NCS) – can be used with any dispatching policy and any measure of execution
eligibility.
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• Stack Resource Policy (SRP) – defined as an extension to PCP for EDF systems but can be used with any static job-
level1 execution eligibility. The SRP when applied to FP systems is also called the Immediate Priority Ceiling Protocol
(ICP) (also called highest locker protocol or priority protected protocol or priority ceiling emulation).

Note that the usual assumption with resource control policies is that tasks do not self suspend while holding a resource. This
is true with Ada only if resources are encapsulated within protected objects.

In this section, we review the resource control protocols that have been defined for multiprocessors systems and extract
their main characteristics.

Throughout the paper we consider a shared memory multiprocessor system and use the following terms:

• Fully partitioned scheduling – tasks are assigned to a single processor and are bound to that processor for their lifetime.

• Global scheduling – tasks can be executed of any processor

• Cluster scheduling – processors are grouped into clusters. A processor can only be contained in exactly one cluster.
Tasks are assigned to a single cluster and are bound to that cluster for their lifetime. Global scheduling occurs within
each cluster.

2.1 MPCP and DPCP

There have been several versions of the Multiprocessor Priority Ceiling Protocol (MPCP) that extend the single processor
PCP. Initially, Rajkumar et al’s [13] proposed that all global resources were assigned to a single synchronization proces-
sor. This was then generalized in the same paper to allow multiple synchronization processors, but again each resource was
assigned to one synchronization processor. A task that wishes to access a global resource migrates to the synchronization pro-
cessor for the duration of its access. Each global resource is also assigned a ceiling equal to: PH+1+maxi{℘i|τi uses Rk},
where PH is the highest priority of all tasks that are bound to that processor, ℘i is the priority of task i and Rk is a resource.
The protocol is defined below.

Rule 1 Tasks are partitioned between processors. PCP is used for local resource sharing.

Rule 2 When a task τ is blocked by a global resource, it is added to a prioritized queue and suspends. The resource holding
task will continue its execution at the inherited highest priority of the tasks being blocked on that resource (if higher
than its own priority).

Rule 3 If task τ locks a free global resource, it will execute at its current active priority.

Rule 4 When task τ leaves the resource, the next highest priority task in the queue will be granted access to the resource.

For simplicity of implementation, Rajkumar et al [13] suggest that the priority when accessing a global resource can
be raised to the ceiling immediately. We also note that with the basic MPCP there was a single synchronization processor
and nested resource accesses are allowed. The protocol ensured deadlock free access. With the generalized MPCP, nested
resources are not allowed. This is perhaps too strong a constraint. What is really required is that the group of resources
involved in a nesting chain is assigned to the same synchronization processor.

Later, Rajkumar et al [14, 12] renamed the above protocol as the Distributed Priority Ceiling Protocol (DPCP) and clarified
the remote access mechanism. In order to access a global resource, a task must acquire a local agent first. A local agent is
a task on the remote processor where the global resource is being held. Any remote request for the global resource must
be accomplished through the agent. When a global resource request is granted through the agent, the agent executes at an
effective priority higher than any of the normal tasks on that processor. Hence, the protocol was targeted at distributed shared
memory systems. For globally shared memory systems, the need for remote agents is removed and all global resources can
be accessed from all processors. This protocol is now generally referred to as the MPCP.

Unlike in MSRP (see below), with MPCP, the highest priority task can be blocked, once started, by requesting resources
being held by lower priority tasks. This results in potentially a double context switch on each resource access, while MSRP
only requires one [15]. However, this comes at a cost of MSRP wasting processor cycles by busy-waiting.

1The term job is used in scheduling to indicate a single invocation (release) of a task: be it periodic or sporadic. Hence, with a static job-level execution
eligibility, a task does not change its base execution eligibility during its release. However, its execution eligibility can differ from one release to another.
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2.2 MSRP

The Stack Resource Policy, proposed by Baker [1], emphasizes that: “a job is not allowed to start executing until its
priority is the highest among the active jobs and its preemption level is greater than the system ceiling.” The system ceiling
is defined to be the highest ceiling of any currently locked resource. With this approach, all the tasks in the system can use
the same run-time stack (hence the name of the policy).

In order to preserve this property, Gai et al. [9] proposed the Multiprocessor Stack Resource Policy(MSRP) for partitioned
EDF scheduling. Resources are divided into two groups: local and global. Local resources are only accessed by tasks which
execute on the same processor. Global resources are those which can be accessed by tasks running on different processors.
Unlike SRP, global resources have different ceilings: one for each processor. The MSRP protocol is thus defined as:

Rule 1 For each individual processor, SRP is used for sharing local resources. Every tasks has a preemption level, and ceilings
are given to local resources.

Rule 2 Nested resource access is allowed for local resource, and a local resource can use a global resource. However, nested
global resources are prohibited – in order to prevent deadlocks.

Rule 3 For each global resource, every processor defines a ceiling greater than or equal to the maximum preemption level of
the tasks allocated on that processor.

Rule 4 When a task requires a global resource R from processor k, it sets k’s system ceiling to resource R’s ceiling for that
processor. Then, if the resource is free, it executes the resource. Otherwise, the task busy waits in a FCFS queue.

Rule 5 When a global resource is released by task τı executing on processor k, the task at the head of the FCFS queue (if any)
will be granted access to the resource. The system ceiling for k is restored to its previous value.

Following these rules, global resources are shared across processors in a FCFS manner. Of course, a task on another
processor will be able to acquire another global resource. Hence, it is possible that a task, once executing, will find some of
its global resources already allocated. Hence, in order to maintain the ability for all tasks on a processor to share the same
stack, it is necessary to non-preemptively busy-wait on the resource. The alternative approach would be to not allow the other
tasks to executes (that is, implement a global system ceiling). This would results in processors potentially being kept idle.

2.3 FMLP

The Flexible Multiprocessor Locking Protocol (FMLP) proposed by Block et al [2] supports both global and partitioned
systems. Resources under FMLP are divided by the programmer into long and short resources. The protocol introduces the
notion of a resource group, which can contain either short or long resources but not both. A group containing short resources
is protected by a non-preemptive FIFO queue lock. A group containing long resources is protected by a semaphore lock.
Groups contain resources that are nested, so that a task can hold more that one resource at a time. Non nestable resources are
grouped individually. Group locks have the unfortunate side effect of reducing parallelism and are potentially a impediment
to composability. They do, however, allow deadlocks to be avoided (see Section 4).

The protocol is explained below:

• Long Resource. – A task τ that requires a long resource must acquire the group semaphore lock first. The group lock
is served in FIFO order. Under global scheduling, while holding the group lock, it will inherit the maximum priority
of any higher-priority task blocked on a resource in the group. For partitioned scheduling, global long resources are
served non-preemptively and only local priority is inherited.

• Short Resource. – Local resource accesses can use SRP. Again, the group lock should be obtained by a task τ requiring
nested short resources. For global resources, it does this in a non-preemptive manner and remains non-preemptive until
it releases the lock.

To avoid added context switches when accessing short resources with global scheduling, Block et al [2] introduce the concept
of linking a job to a processor. A job T is linked to a processor i at time t if it would be scheduled on processor i at t if all
jobs were fully preemptible. Hence, a job would be linked to a processor where that processor is executing a lower-priority
job non-preemptively.
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2.4 PPCP

The main contribution of the PPCP (Parallel PCP) algorithm proposed by Easwaran and Andersson [8] is to increase the
parallelism of the system by allowing low priority tasks to lock shared resources in some situations which are not permitted
by PCP. Tasks are globally scheduled across processors, and priority inheritance is used when a task holding a resource is
blocking a higher priority task. Each resource also has a ceiling value, which is the highest effective priority at which that
resource can be requested. Hence, when a task is holding a resource, the task’s effective priority is the priority inherited from
other tasks it is blocking. However, the resource-holding tasks also has the notion of a “pseudo effective-priority”. This is the
maximum priority its effective priority can be boosted to. This is, of course, the ceiling of the resource. Details of the PPCP
is given below:

Rule 1 A task τj is allowed to lock a shared resource if the total number of tasks with base priority less than j and pseudo
effective-priority greater than j is at most αi. αi is an implementation defined value that determines the maximum
length of the blocking chain of the conventional priority inheritance protocol. By setting αi to 1, PPCP works similar
to PCP. If set to the total number of tasks in the system, the protocol will have the same semantics as Priority Inheritance
Protocol (PIP).

Rule 2 If there are any unassigned processors and a task τj does not require any resource, the free processor is assigned to τj .
Otherwise, Rule 3 applies.

Rule 3 If the current executing task τj requires a resource and the resource is locked, PIP applies. If the resource is free, rule
1 applies and the resource is either assigned to τj or τj is suspended.

The value of αi needs to be carefully chosen. The blocking chain is reduced at the price of reducing the response time of
high priority tasks.

2.5 OMLP

The O(m) locking protocol (OMLP) is a suspension-based resource sharing protocol proposed by Brandenburg et al [4].
The algorithm is proposed to reduce the interference from further priority inversion in FMLP caused by suspended tasks
being blocked by long resources. Resources are either global or local. Local resources are shared between tasks on the same
processor, and can be managed by any particular uniprocessor resource sharing protocols. OMLP can be used in either global
or partitioned systems.

• Global OMLP – Each global resource, k, is managed by two queues: a FIFO queue (FQk) and a Priority Queue
(PQk). A resource is always granted to the head element of FQk. The FQk is restricted to contain only m (the
number of processors in the system) tasks waiting to access the resource. If the number of waiting task exceeds m,
the rest are placed in PQk. Tasks in PQk are priority ordered, where the highest priority task will be the next task
dispatched to FQk if the number of task in FQk at any time is less than m. When a task releases the resource k, it is
dequeued from the FQk queue and the task at the new head of the queue is resumed at a priority which is equal to the
highest priority of any task in FQk and PQk.

• Partitioned OMLP – Partitioned OMLP uses contention tokens to control access to global resources. There is one
token per processor, which is used by all tasks on that processor when they wish to access a global resource. Associated
with each token there is a priority queue PQm. There is now only one queue per global resource, a FIFO queue, again
of maximum length m. In order to acquire a global resource, the local token must be acquired first. If the token is
not free, the requiring task is enqueued in PQm. If free, the token is acquired, its priority is then raised to the highest
priority on that processor, and the task is added to the global FQk and, if necessary, suspended. When the head of
FQk finishes with the resource, it is removed from the queue, releases its contention token, and the next element in the
queue (if any) is granted the resource.

Recently, Brandenburg and Anderson [5] have developed a new resource sharing scheme for clustered multiprocessor
systems based on OMLP. The aim is to limit multiple repeated priority-inversion blocks that occur with a simple priority
boosting scheme. Essentially, a high priority thread donates its priority to a lower priority thread to ensure that the lower
priority thread is scheduled when holding a resource. Such a donation can only be performed once.
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Scheduling Resources Nested Access Queueing
Resources Priority

MPCP Partitioned Yes No Ceiling (priority boost-
ing)

Suspends in a priority-
ordered queue

DPCP Partitioned Yes No Ceiling (priority boost-
ing)

Suspends in a priority-
oredered queue

MSRP Partitioned Yes No Non preemptive Spins in a FIFO queue
FMLP Both No Yes (Group

lock)
Non preemptive for short Short: Spins in a FIFO

queue; Long: Suspends
in FIFO queue

PPCP Global No No Inheritance Suspends in a Priority
queue

OMLP Both Yes Yes (Group
lock)

Inheritance for global,
Non preemptive for par-
titioned

Suspends in FIFO
and Priority-ordered
(or Contention token)
queues

Clustered
OMLP

Clustered No Yes (Group
lock)

Priority donation Suspends in a FIFO
queue

Figure 1. Summary of Resource Sharing Protocols

2.6 Queue Locks

For globally scheduled systems, spin locks usually form part of the resource access protocol. Queue locks are spin locks
where resources are granted in FCFS order. Tasks waiting for the resource are inserted into a FIFO queue. Waiting tasks are
generally non-preemptive. These spin lock resource sharing methods are preferable for small and simple resources where the
time tasks spent in a resource is shorter than the time taken to perform a context switch [3][10]; FIFO queueing is usually
preferred to priority queuing because the estimation of blocking time is easier (with more complex approaches, conservative
assumptions of task arrival must be made which can lead to pessimistic blocking times) [3]. The disadvantage of preempting
resource-holding jobs is the side-effect of substantially delaying other jobs waiting for the same resource. Also, in terms of
partitioned scheduling, priorities across different processors may not be comparable to each other [3].

The main issue with spin locks is determining the worst-case time that a task can be held in the FIFO queue. This is
beyond the scope of this paper; see Yang et al for a discussion on this issue [7, 6].

2.7 Summary

Figure 1 captures the main characteristics of the resource sharing protocols. The column headings have the following
meaning.

Scheduling – whether the approach can be applied to global, partitioned or cluster scheduling.

Resources – whether the approach needs to distinguish between local and globally accessed resources.

Nested Resources – whether nested global resource access is allowed, and if so, what is the approach.

Access Priority – how the priority is set for accessing the resource: is it ceiling, inheritance, or non preemptive.

Queueing – are waiting tasks suspended or do they busy wait.

3 Ada and Multiprocessors

Ada, since Ada 2005, has supported different dispatching policies including FP and EDF. EDF dispatching can be applied
across the whole range of priorities or across a restricted range. In this way, EDF scheduling is integrated into a FP frame-
work. Baker’s Stack Resource Policy [1] (SRP) is also integrated with Ada’s ICP protocol to support resource sharing using
protected objects.
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The approach that Ada adopted for EDF scheduling was novel, and the protocol’s correctness was not formally verified.
As a result the initial definition was found to contain errors [17] and had to be corrected. Although the protocol is now
believed to be correct, its properties on a multiprocessor platform are unclear. This is partly because Ada does not completely
define how protected objects are accessed in a multiprocessor environment (see Section 3.2). Also the SRP cannot be directly
applied to multiprocessors [9]. According to Gai et al [9], the SRP was designed for single processor systems and cannot
be directly applied to multiprocessors.

“The Stack Resource Policy has several interesting properties. It prevents deadlock, bounds the maximum block-
ing times of tasks, reduces the numer of context switches and can easily extend to multi-unit resources. ...
However, the SRP does not scale to multiprocessor systems.”

In this section, we first briefly summarise the the range of scheduling options available for multiprocessors systems as
from Ada 2012. We then focus on accessing protected objects.

3.1 Scheduling

Ada 2012 will allow a wide range of scheduling approaches on multiprocessors, including

• Global preemptive priority-based scheduling

• Fully partitioned preemptive priority-based scheduling

• Global EDF scheduling

• Partitioned EDF scheduling

In addition to the above, Ada allows groups of processors to form “dispatching domains” (clusters), where each processor
can only be part of one dispatching domain. Tasks can be globally scheduled within a single dispatching domain and it is
also possible to fix a task to run on a single processor within a dispatching domain.

3.2 Accessing Protected Objects

The Ada Reference Manual (ARM) and its annotated companion (AARM) does not fully define the access protocol for a
protected object on a multiprocessor system. The following points summarise the current position.

• Where there is contention for a protected object’s lock, the recommendation to use spin-locks is a discussion point to
a note.

“If two tasks both try to start a protected action on a protected object, and at most one is calling a protected
function, then only one of the tasks can proceed. Although the other task cannot proceed, it is not considered
blocked, and it might be consuming processing resources while it awaits its turn. There is no language-
defined ordering or queuing presumed for tasks competing to start a protected action – on a multiprocessor
such tasks might use busy-waiting; for monoprocessor considerations, see D.3, “Priority Ceiling Locking”.
Discussion: The intended implementation on a multi-processor is in terms of “spin locks” the waiting task
will spin.” AARM Note 18, Section 9.5.1.

• It is implementation defined whether spinning occurs non-preemptively or, if not, at what priority. Furthermore, it is
not defined whether there are queues (FIFO or priority) associated with the spin-lock.

“It is implementation defined whether, on a multiprocessor, a task that is waiting for access to a protected
object keeps its processor busy.” AARM D.2.1. par 3.

• The task which executes a protected action is not specified.

“An implementation may perform the sequence of steps of a protected action using any thread of control; it
need not be that of the task that started the protected action. If an entry body completes without requeuing,
then the corresponding calling task may be made ready without waiting for the entire protected action to
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complete. Reason: These permissions are intended to allow flexibility for implementations on multipro-
cessors. On a monoprocessor, which thread of control executes the protected action is essentially invisible,
since the thread is not abortable in any case, and the “current task” function is not guaranteed to work during
a protected action (see C.7.1).” AARM 9.5.3 pars 22 and 22.a.

• The ceiling locking policy must be used with EDF scheduling.

“If the EDF Across Priorities policy appears in a Priority Specific Dispatching pragma (see D.2.2) in a
partition, then the Ceiling Locking policy (see D.3) shall also be specified for the partition.” AARM D.2.6
par 11/2.
“The locking policy specifies the meaning of the priority of a protected object, and the relationships between
these priorities and task priorities”. AARM D.3 6/2.

• The value of the ceilings can be altered by the implementation.

“Every protected object has a ceiling priority, which is determined by either a Priority or Interrupt Priority
pragma as defined in D.1, or by assignment to the Priority attribute as described in D.5.2. The ceiling
priority of a protected object (or ceiling, for short) is an upper bound on the active priority a task can have
when it calls protected operations of that protected object.” AARM D.3. par 8/2.

“The implementation is allowed to round all ceilings in a certain subrange of System.Priority or Sys-
tem.Interrupt Priority up to the top of that subrange, uniformly.

Discussion: For example, an implementation might use Priority’Last for all ceilings in Priority, and In-
terrupt Priority’Last for all ceilings in Interrupt Priority. This would be equivalent to having two ceiling
priorities for protected objects, “nonpreemptible and “noninterruptible, and is an allowed behavior. Note
that the implementation cannot choose a subrange that crosses the boundary between normal and interrupt
priorities.” AARM D.3 par 14/14a.

4 Resource Sharing Protocols and Ada

Table 1 captures the main characteristics of the resource sharing protocols. The following summarises whether the current
protocols are compatible with Ada.

• MPCP – No: suspends on an unavailable lock.

• DPCP – No: suspends on an unavailable lock.

• MSRP – Yes: if use ceiling of ceilings for resources.

• FMLP – Partial: short resources only.

• PPCP – No: suspends on an unavailable lock and no immediate inheritance.

• OMLP – No: suspends on an unavailable lock.

As can be seen, the MPCP, DPCP, PPCP and OMLP are not a good match for Ada as they suspend on access to a resource.
In a fully partitioned system, that might be enforced by a Ravenscar-like profile, a slight variant of the MSRP can be used. If
FMLP is constrained to short resources, it is essentially equivalent to using MSRP on the group lock and treating all resources
as global. It, perhaps should be noted as an aside, that use of the Ada rendezvous could be considered as a long resource.

In Ada, nested resource access is allowed. In most of the protocols, either nested resource accesses are disallowed, or the
notion of groups are introduced (as in FMLP) and a group lock must be obtained. This is to avoid deadlocks. In standard
concurrency theory, deadlock occurs when the following four condition holds:

• mutual exclusion – only one task can use a resource at once (that is, the resource is non sharable or at least limited in
its concurrent access);

• hold and wait – there must exist tasks which are holding resources while waiting for others;
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• no preemption – a resource can only be released voluntarily by a task; and

• circular wait – a circular chain of tasks must exist such that each task holds resources which are being requested by the
next task in the chain.

There are three possible approaches to dealing with deadlock:

• deadlock prevention – ensure that at least one of the above conditions does not hold at all times;

• deadlock avoidance – allow the four conditions to occur but undertake measures to ensure the system never deadlocks;

• deadlock detection and recovery – allow deadlocks to be detected and recovery processes to be performed.

Ada on a single processor adopts the deadlock prevention approach by preventing the circular wait condition. It does this
by implicitly imposing an order on the resource accesses using ceiling priorities. A protected object with ceiling priority i
cannot call a protected object of ceiling priority j if i > j. Unfortunately, this combines the notion of ordering with that
of execution eligibility. We have already seen that for EDF scheduling it is necessary to separate out execution eligibility
from preemption control. Here, Ada’s priority is now interpreted to be preemption level, but again it is integrated into the
scheduling framework.

For multiprocessor systems, global resources may need to be accessed non-preemptively. The Ada approach for achieving
this is to use the priority mechanism to run tasks at the highest priority. By doing this, we have lost the ordering information
that was implied by the use of ceilings. Hence, with multiprocessor Ada, deadlock is re-introduced.

In summary, in order to bound blocking and prevent deadlock

• for global FP or global EDF system, all protected objects run non-preemptively with queue locks;

• for fully partitioned systems, all global protected objects run non-preemptively with queue locks and local protected
objects use ICP or SRP for FP and EDF respectively;

• for cluster systems, all global protected objects run non-preemptively with queue locks and local protected objects use
ICP or SRP for FP and EDF respectively;

• nested protected object calls must be refactored to follow the FMLP protocol, or a new facility is required to re-
introduce order into protected object accesses.

An application that wants to use Ada for predictable resource requires:

1. the ability to identify the global protected objects and set the ceiling to be higher than the highest priority of all the
tasks running on all the processors from which the protected object can be accessed – this is achievable using the
standard mechanisms for setting the ceilings of a protected object;

2. the implementation to support FIFO spin locks when accessing a protected object – this is not prohibited by the ARM.
However, there is currently no documentation requirement for an implementation to specify its access protocol;

3. the ability to prevent deadlocks.

Note that 1) is a stronger requirement than that specified by MSRP for partitioned systems, which allows the ceilings to be
dependent of the current processor executing the protected action. This is not implementable in Ada even with dynamic
ceilings. Hence, the ceiling has to be set to the highest priority in the system. The effect on the task is the same, the task
executes non-preemptively on that processor. The alternative approach is not to set the ceiling at all for global protected
objects, as the default is for them to be executed non-preemptively.

The biggest problem facing an implementation is how to prevent deadlocks from occurring. Clearly applications can
write their code to ensure deadlocks do not occur and use, for example, model checking techniques to show the absence of
deadlock. The programmer can also program their own notion of the FMLP group lock (a deadlock avoidance approach) and
make resources within a group non-protected.

The preferred way, however, would be to regain the order information that is present in Ada, perhaps using a new protected
object aspect. This would allow more parallelism into the system compared to FMLP’s group locks. However, it does
introduce transitive blocking chains which complicate the blocking analysis.

Ada Letters, April 2013 39 Volume XXXIII, Number 1



4.1 EDF Scheduling and Fully Partitioned Systems

We note, the ARM wording is not very clear on how local protected objects are accessed in partitioned systems, section
D.2.6 says:

“the active priority when first activated or while it is blocked is defined as the maximum of the following:

• the lowest priority in the range specified as EDF Across Priorities that includes the base priority of
T;

• the priorities, if any, currently inherited by T;

• the highest priority P, if any, less than the base priority of T such that one or more tasks are executing within
a protected object with ceiling priority P and task T has an earlier deadline than all such tasks.

Ramification: The active priority of T might be lower than its base priority. AI95-00357-01 When a task T is
first activated or becomes unblocked, it is added to the ready queue corresponding to this active priority. Until
it becomes blocked again, the active priority of T remains no less than this value; it will exceed this value only
while it is inheriting a higher priority. Discussion: These rules ensure that a task executing in a protected object
is preempted only by a task with a shorter deadline and a higher base priority. This matches the traditional
preemption level description without the need to define a new kind of protected object locking.”

The above wording needs to be made tighter so that it refers to the processor on which a task is allocated.

5 Adding Flexibility to Protected Object Access

It is clear that techniques for multiprocessor scheduling and resource access are still in their infancy. The new facilities
that Ada 2012 provides for global, partitioned and cluster scheduling have added a great deal of flexibility into the language.
The hope is that as new hybrid models become available, programs adhering to these models can be programmed in Ada.
Unfortunately, the access protocol to protected objects have been left as implementation-defined. In this section, we consider
how easy it would be to support a variety of protocols. We include even those which might suspend the calling tasks, even
though Ada considers the call of protected functions and procedures as nonblocking (see section 3.2). There is evidence in
the literature [4] that blocking protocols might be more optimal.

Of course, general techniques for user-defined scheduling (such as those proposed by Rivas and Harbour [11]) would allow
the programmer to control the protected object access protocol. Alternatively, one could suggest some form of interface using
reflection [16]. More generally, we could separate out the sharing of data between parallel tasks and provide some abstract
type different from a protected object.

Here, however, we provide a targeted proposal for the access protocol for protected objects. The goal is not to present a
full proposal but to illustrate the type of facilities that could be supported.

5.1 Queue Locks

First, we suggest that the Real-Time Annex provides two new locking mechanisms. One where tasks spin waiting for the
lock, the other where they are suspended.

Spin Lock – There are two main characteristics of a spin lock. The priority at which the spinning occurs and the order of
the associated queue.

Suspension Lock – The main characteristic of a suspension lock is the queuing order. Here we assume that no automatic
priority inheritance is performed.

with ...; use ...;
package System.Multiprocessors.Queue_Locks is

type Queue_Order is (FIFO_Ordered, Priority_Ordered); -- for example
type Spinning_Priority is (Active_Priority_Of_Task, Non_Preemptively);
type Spin_Lock(Length : Positive := 1; Order : Queue_Order := FIFO_Ordered;
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At_Pri : Spinning_Priority := Non_Preemptively) is private;
function Acquire(L : Spin_Lock) return Boolean;
-- returns False if Queue full, True when lock acquired

procedure Release(L : Spin_Lock);

type Suspension_Lock(Length : Positive := 1;
Order : Queue_Order := FIFO_Ordered ) is private;

function Acquire(L : Suspension_Lock) return Boolean;
-- returns False if Queue full, True when lock acquired

function Remove_Head(L : Suspension_Lock) return Task_Id;
procedure Add(L : Suspension_Lock; T : Task_Id);
function Highest_Queued_Priority(L : Suspension_Lock) return Any_Priority;
procedure Release(L : Suspension_Lock);

private ...
end System.Multiprocessors.Queue_Locks;

The above package is useful in its own right.

5.2 Protected Object Access

In Table 1, the various approaches to resource sharing were summarized. The goal here is to allow an application to define
its own access protocol. First, we assume the introduction of a new protected object aspect called Global; when set to true,
this indicates that a) the PO can be accessed from more than one processor and b) the ceiling priority should be interpreted
as an order requirement. A new locking policy, called User Protected is also introduced. When this policy is enforced,
every protected object can have an associated controller object which implements the access protocol. The following package
illustrates the approach.

with ...; use ...;
package System.Multiprocessors.Protected_Object_Access is
type Lock_Type is (Read, Write);
type Lock_Visibility is (Local, Global);
type Protected_Controlled is new Limited_Controlled with private;

overriding procedure Initialize (C : in out Protected_Controlled);
overriding procedure Finalize (C : in out Protected_Controlled);
procedure Lock(C : in out Protected_Controlled; L : Lock_Type; V : Lock_Visibility;

Ceiling : Priority; Tid : Task_Id);
procedure Unlock(C : in out Protected_Controlled; Tid : Task_Id);

private ...
end System.Multiprocessors.Protected_Object_Access;

When an object of Protected Controlled is associated with a protected object, every time the Ada run-time system
wants to lock/unlock the object it calls the associated Lock/Unlock procedure. A protected object can be associated with
the controller, for example, as follows:

protected type X (PC : access Protected_Controlled) with
Locking_Policy => (User_Protected, Lock_Visibility => Global, Locking_Algorithm => PC) is
procedure A;

end X;

Now suppose an application wants to implement, for example, the global OMLP protocol. It does this by providing the
following package

with ...; use ...;
package OMLP is

type Global_OMLP(Num_Of_Additional_Tasks : Natual) is new Protected_Controlled with private;
overriding procedure Initialize (C : in out Global_OMLP);
overriding procedure Finalize (C : in out Global_OMLP);
overriding procedure Lock(C : in out Global_OMLP; L : Lock_Type; V : Lock_Visibility;

Ceiling : Priority; Tid : Task_Id );
overriding procedure Unlock(C : in out Global_OMLP; Tid : Task_Id);

private
type Global_OMLP(Num_Of_Additional_Tasks : Natural) is new Protected_Controlled with
record
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PQ : Suspension_Lock(Num_Of_Additional_Tasks, Priority_Ordered);
SQ : Suspension_Lock(Positive(Number_Of_CPUs), FIFO_Ordered);
Original_Priority : Any_Priority;
end record;

end OMLP;

The OMLP protocol makes use of two suspension queues. The FIFO queue’s length is limited to the number of processors
in the system, and the priority queue’s length is limited to the number of tasks that can call the protected object minus the
number of processors in the system (or zero, if there are less that the number of processors). As the OMLP implements
priority inheritance on the task owning the lock, then the original priority of the task must be saved.

A simplified structure of the body of this package is shown below:

with ...; use ...;
package body OMLP is

overriding procedure Initialize (C : in out Global_OMLP) is
begin -- not shown; end Initialize;

overriding procedure Finalize (C : in out Global_OMLP) is
begin -- not shown; end Finalize;

overriding procedure Lock(C : in out Global_OMLP; L : Lock_Type; V : Lock_Visibility;
Ceiling : Priority; Tid : Task_Id ) is

PF, PP : Any_Priority;
begin
-- For simplicity, the following assumes all locks require write access.
-- We also omit the keeping track, using task attributes, of the
-- locks already owned by the tasks, and the raising of ceiling violations
-- if the order is violated.

if not Acquire(C.SQ) then
if not Acquire(C.PQ) then
-- error

end if;
end if;
-- lock acquired
PF := Highest_Queued_Priority(C.SQ);
PP := Highest_Queued_Priority(C.PQ);
if PF > PP then Set_Priority(PF);
else Set_Priority(PP); end if;

end Lock;

overriding procedure Unlock(C : in out Global_OMLP; Tid : Task_Id) is
T : Task_Id;

begin
-- need this to be an atomic action
T := Remove_Head(C.PQ);
Release(C.SQ);
if T /= Null_Task_Id then Add(C.SQ, T); end if;

end Unlock;
end OMLP;

5.3 Open Issues

The goal of this section was to consider the impact of having more control over accessing protected objects. Having
explored one approach, several issues emerge.

• Does the approach given in Section 5.2 generalize to support entries? Or is it necessary for the run-time system to
expose a low-level interface defining its interaction between guard evaluation and lock acquisition?

• Ada defines a call to a protected procedure/function (from the language viewpoint) as non blocking – what impact does
it have if the application changes this? For example, if the program wanted to time out on access to the PO, it could
use the following:
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select
delay X;

then abort
PO.procedure_call; -- note, once the call is in progress it is abort deferred

end select;

• In Ada, when a protected action completes there is some epilogue code that is executed that services all the outstanding
calls. Is this the most appropriate approach for multiprocessor systems?

• If a PO is called with an inherited priority, how can the application code determine this?

• The issue of interrupt handling and User Protected protected objects.

6 Conclusions

This paper has examined the various multiprocessor resource control policies to determine which are compatible with
Ada. The results can be summarized as follows:

1. Ada recommends spinning when accessing already-locked global protected objects, hence those protocols that use
suspension are incompatible.

2. To bound blocking times, any spinning must be non preemptive and the queuing policy must be defined. Documentation
requirements need to be added in the Real-Time Annex.

3. Deadlock with nested protected object calls can only be avoided if the programmer implements their own concurrency
control protocol (such as FMLP resource locks);

4. For global protected objects, no ceiling priority should be set as the default is System.Priority’Last.

Given that real-time resource allocation protocols for multiprocessors are still in their infancy, there may be some merit is
providing more primitive support for locking so that programmers can implement their our strategies.
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Abstract
This paper provides an overview of the real-time additions to Ada 2012 and their implementation

status in GNAT. Most of these additions are related to multiprocessors, helping to exploit parallelism
in an efficient and predictable way, and this is the area where GNAT has made more progress. There
is also execution-time accounting of interrupts that has been added to bare board targets, where that
GNAT run-time library has fine-grained control. The area of new scheduling policies is the one which
has received less attention in GNAT, because of the lack or required support in underlying operating
systems.

1 Introduction

New Ada versions use to come with attractive additions for the real-time community, and Ada 2012 could
not be an exception. The new language revision addresses new hardware architectures, new capabilities
provided by operating systems, and new aspects in real-time analysis. GNAT tries to follow these new
additions swiftly, providing a testbed for early testing and verification of these new features, as well as a
platform for their early adoption.

This paper describes the implementation status and future plans in GNAT Pro regarding the new real-
time features added to Ada 2012. These are the main real-time areas where Ada 2012 provides new things:

• Ravenscar

• Multiprocessors

• Execution-time monitoring

• Scheduling and dispatching policies

The area with more activity is that of multiprocessors (including the use of Ravenscar on multiprocessors),
but there has been evolutions in other areas. The following sections discuss these areas in detail. Many
other Ada 2012 additions are already implemented in GNAT, but this paper focuses on those more closely
tied to real-time systems.

2 Ravenscar for multiprocessors

During the last IRTAW 14, the author [18] presented some ideas for additions to the existing monoprocessor
Ravenscar profile to support multiprocessor systems using a fully partitioned approach. An offspring of that
proposal was the definition of Ada Issue 171 [7], where CPU affinity is defined statically using pragma CPU.
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These ideas were implemented in GNAT bare board targets [12], initially targeting the LEON3 multi-
processor board [1], with the idea to extend its support to other multiprocessor bare board targets, such as
PowerPC.

Scheduling is a simple extension to the monoprocessor fixed-priority preemptive scheduling algorithm
supported by the Ravenscar profile, with tasks allocated statically to processors. Each processor implements
a preemptive fixed-priority scheduling policy with separate and disjoint ready queues.

There is a single run-time system, where the only per-processor information is the ready and delay queues
(those containing the tasks ready to execute and waiting for a delay respectively). Some run-time data is
common and shared among tasks on different processors (such as the time reference).

When internal data in the run-time system can be modified by tasks executing on different processors,
inter-processor locking mechanisms (fair locks [19], a cooperative mutual exclusion algorithm where the
ownership of the lock is transferred in a round-robin fashion among waiting processors) are used to guarantee
mutual exclusion.

Per-processor data (such as the ready queue) can only be modified by operations executing on the owner
processor, so these operations can be performed simply disabling interrupts on the affected processor. When
operations on one processor require actions on a different processor (such as waking up a task), a special
interrupt is triggered in the target processor, which will them perform the actual operations.

The restricted library-level protected objects defined by the Ravenscar profile are used for inter- and intra-
processor communication and synchronization. The same restrictions that exist in the Ravenscar profile for
single processors apply to the case of a multiprocessor (a maximum of one protected entry per protected
object with a simple boolean barrier using ceiling locking access).

Protected objects for inter-processor communication use multiprocessor synchronization mechanisms (fair
locks). When a task waiting on an entry queue is awaken by another tasks executing on a different processor
than the waiting task, an inter-processor interrupt facility is used to modify the ready queue in the target
processor. Protected objects used only by tasks within the same processor always get access to the fair lock,
so the multiprocessor overhead in this case is negligible.

The only supported Ravenscar-compliant mechanism to specify interrupt handlers is to attach a protected
procedure. Interrupts can be configured to be handled by any number of processors, and the affinity mask
for every interrupt is set up by the startup routine (there is no Ada high-level mechanism to do so). Affinity
for interrupts is not part of AI05-0171 or any other Ada 2012 proposal, but it would be interesting to be
able to use the same pragma CPU defined for tasks. The pragma could be attached to the definition of the
protected handler.

A single common hardware clock and a single shared hardware timer are used for all processors. It provides
a common reference for all the tasks in the system, thus avoiding time drifting problems, and limiting the
amount of hardware resources required from the underlying platform. Each processor implements a separate
and disjoint delay queue. When a task with an expired delay is in a different processor from the one handling
the interrupt then an inter-processor interrupt is triggered on the target processor, and the handler for this
inter-processor interrupt will traverse the list of local expired events, executing the required actions in the
local queues. The implementation of the time-keeping functionality (clock) does not differ when migrating
to a multiprocessor architecture.

In a nutshell, the implementation for multiprocessor LEON3 was achieved without adding much complex-
ity to the run-time library. The same source code is used for both monoprocessor and multiprocessor, and the
selection of the number of processors is simply a matter of changing a constant (the multiprocessor-specific
code becomes deactivated code in monoprocessor systems, which is never present in the final application
binary). The associated run time overhead remains small.

3 General purpose multiprocessor architectures

Previous section 2 described the implementation of a statically partitioned extension to Ravenscar. Ob-
viously, the capability of statically allocating task affinities is of interest (and makes sense) outside the
Ravencar restrictions.

Multiprocessor architectures in Ada were largely discussed during IRTAW 14 [10], including a flexible
and general-purpose mechanism to handle task affinities in the form of dispatching domains [11].
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The notion of task affinity is supported by mainstream operating systems (such as Linux, Windows,
Solaris, VxWorks, . . . ) so GNAT implements pragma CPU on top of these operating systems. This pragma
can appear in the task definition or in the declarative part of the main subprogram (for the environment
task).

One of the challenges was to address smoothly versions of the target operating system not supporting
task affinities. For example, Linux added the support for task/thread affinities to the 2.5 version. In order
to be able to provide the same precompiled run-time library working on versions with and without task
affinity support, weak symbols were used.

pragma Weak External applied to a library-level entity marks its associated symbol as a weak symbol for
the linker. It is equivalent to attribute ((weak)) in GNU C, and causes the entity to be emitted as a weak
symbol instead of a regular symbol, that is to say a symbol that does not have to be resolved by the linker
if used in conjunction with a pragma Import. When a weak symbol is not resolved by the linker, its address
is simply set to zero. If a program references at execution time an entity to which this pragma has been
applied, and the corresponding symbol was not resolved at link time, then the execution of the program is
erroneous. It is not erroneous to take the Address of such an entity.

On Linux, function pthread attr setaffinity np is the one used to set the CPU affinity mask of a task/thread
(sched setaffinity changes affinity for processes), but this is not available on relatively old versions.

f u n c t i o n p t h r e a d a t t r s e t a f f i n i t y n p
( a t t r : acces s p t h r e a d a t t r t ;
c p u s e t s i z e : s i z e t ;
cpu s e t : acces s c p u s e t t ) r e t u r n i n t ;

pragma Import (C , p t h r e a d a t t r s e t a f f i n i t y n p ,
” p t h r e a d a t t r s e t a f f i n i t y n p ” ) ;

−− Do noth ing i f r e q u i r e d suppo r t not p r o v i d ed by the o p e r a t i n g system

i f p t h r e a d a t t r s e t a f f i n i t y n p ’ Address /= System . Nu l l Add r e s s and then
T.Common . Base CPU /= System . Mu l t i p r o c e s s o r s . Not A Spec i f i c CPU

then
de c l a r e

CPU Set : a l i a s e d c p u s e t t := ( b i t s => ( othe r s => Fa l s e ) ) ;
beg in

CPU Set . b i t s ( I n t e g e r (T.Common . Base CPU ) ) := True ;
R e s u l t :=

p t h r e a d a t t r s e t a f f i n i t y n p
( A t t r i b u t e s ’ Access ,
CPU SETSIZE / 8 ,
CPU Set ’ Access ) ;

pragma As s e r t ( R e s u l t = 0 ) ;
end ;

end i f ;

Support for multiprocessor dispatching domains [4] has recently been added to GNAT, using the primitives
for handling affinities provided by Linux, Windows, Solaris, and VxWorks.

The Ada model is more restricted than the generic mechanism provided by the operating systems: dis-
patching domains are non-overlapping, they can only be created by the environment task, and they can only
be created before calling the main subprogram. However, this more static model is flexible enough to sup-
port many different partitioning schemes, while at the same time providing for the definition of analyzable
software architectures.

This implementation showed a couple of aspects worth fixing in the current definition of package Sys-
tem.Multiprocessors.Dispatching Domains. First, and foremost, this unit cannot be Preelaborate because
it depends on package Ada.Real Time which is not Preelaborate. Second, the default dispatching domain
System Dispatching Domain is defined as constant, but the dispatching domain it represents is actually not
constant (it is implicitly modified by the creation of other dispatching domains).

4 Parallel task synchronization

With the widespread arrival of concurrent/parallel software architectures and parallel machines, effective
parallel task synchronization is an interesting goal, not to be neglected by Ada.

At the last IRTAW 14, Michell et al. [15] proposed the addition of a new synchronization mechanism
allowing a set of tasks to be blocked and be released at once. This functionality addresses the situation where
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a group of tasks must wait until all of them reach a synchronization point, and then be released together to
process concurrently.

The POSIX barrier mechanism [14], where a number of tasks wait on a barrier and are released simulta-
neously when there is a given number of waiting tasks, is the source of inspiration of this new functionality.

Ada Issue 174 [9] acknowledges the interest of this barrier paradigm, and a Synchronous Barrier type
has been added to Ada 2012 to allow many tasks to be blocked and be released together:

package Ada . S y n c h r o n ou s Ba r r i e r s i s
pragma P r e e l a b o r a t e ( S y n c h r o n ou s Ba r r i e r s ) ;
subtype B a r r i e r L i m i t i s Po s i t i v e range 1 . . <imp lementat ion−de f i n ed >;
type Syn ch r o nou s Ba r r i e r ( R e l e a s e Th r e s h o l d : B a r r i e r L i m i t ) i s

l im i t e d p r i v a t e ;
procedure Wai t Fo r Re l e a s e ( The Ba r r i e r : i n out Syn ch r o nou s Ba r r i e r ;

N o t i f i e d : out Boolean ) ;
p r i v a t e

−− not s p e c i f i e d by the l anguage
end Ada . S y n c h r o n ou s Ba r r i e r s ;

When a variable of type Synchronous Barrier is created, there are no waiting tasks and the barrier is set to
block tasks. When the number of waiting tasks reaches the Release Threshold, all tasks are simultaneously
released and the Notified out parameter is set to True in an arbitrary one of the callers. All other callers
result in Notified being set to False upon returning from the call.

On systems supporting POSIX barriers, such as Linux or IRIX, the GNAT implementation relies on the
POSIX functionality (the Ada package is a straightforward binding to POSIX):

procedure Wai t Fo r Re l e a s e
( The Ba r r i e r : i n out Syn ch r o nou s Ba r r i e r ;
N o t i f i e d : out Boolean )

i s
Re su l t : i n t ;

PTHREAD BARRIER SERIAL THREAD : constant := −1;
−− Value used to i n d i c a t e the t a s k which r e c e i v e s the n o t i f i c a t i o n f o r
−− the b a r r i e r open .

beg in
Re su l t := p t h r e a d b a r r i e r w a i t

( b a r r i e r => The Ba r r i e r . POSIX Barr ie r ’ Access ) ;
pragma As s e r t

( R e s u l t = 0 or e l s e Re su l t = PTHREAD BARRIER SERIAL THREAD ) ;

N o t i f i e d := ( Re s u l t = PTHREAD BARRIER SERIAL THREAD ) ;
end Wai t Fo r Re l e a s e ;

On systems where the POSIX barrier functionality is not available, a functionally equivalent implementation
is provided in GNAT using a protected entry:

pro tec ted type Syn ch r o nou s Ba r r i e r ( R e l e a s e Th r e s h o l d : B a r r i e r L i m i t ) i s
en t r y Wait ( N o t i f i e d : out Boolean ) ;

p r i v a t e
Keep Open : Boolean := Fa l s e ;

end Syn ch r o nou s Ba r r i e r ;

pro tec ted body Syn ch r o nou s Ba r r i e r i s

−− The c o n d i t i o n ”Wait ’ Count = Re l e a s e Th r e s h o l d ” opens the b a r r i e r
−− when the r e q u i r e d number o f t a s k s i s r eached . The c o n d i t i o n
−− ”Keep Open” l e a v e s the b a r r i e r open wh i l e t h e r e a r e queued t a s k s .
−− While t h e r e a r e t a s k s i n the queue no new ta sk w i l l be queued
−− ( no new p r o t e c t e d a c t i o n can be s t a r t e d on a p r o t e c t e d o b j e c t
−− wh i l e ano the r p r o t e c t e d a c t i o n on the same p r o t e c t e d o b j e c t i s
−− underway , RM 9 . 5 . 1 ( 4 ) ) , g u a r an t e e i n g tha t the b a r r i e r w i l l
−− remain open on l y f o r tho s e t a s k s a l r e a d y i n s i d e the queue when
−− the b a r r i e r was open .

ent r y Wait ( N o t i f i e d : out Boolean )
when Keep Open or e l s e Wait ’ Count = Re l e a s e Th r e s h o l d

i s
beg in

Keep Open := Wait ’ Count > 0 ;
N o t i f i e d := Wait ’ Count = 0 ;

end Wait ;
end Syn ch r o nou s Ba r r i e r ;
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The drawback of the implementation using the protected entry is the lack of the potential parallel release of
waiting tasks, because tasks in an entry queue can only be released in a sequential manner, with the entry
conditions being reevaluated each time.

5 Memory barriers

On multiprocessor systems, non-blocking algorithms (such as lock-free and wait-free) are extensively used
to effectively exploit hardware parallelism. For example, an implementation like the following:

ta sk Producer i s
pragma CPU ( 0 ) ;

end Producer ;

ta sk Consumer i s
pragma CPU ( 1 ) ;

end Consumer ;

Shared Data : I n t e g e r := 0 ;
pragma V o l a t i l e ( Shared Data ) ;

B a r r i e r : Boolean := Fa l s e ;
pragma V o l a t i l e ( B a r r i e r ) ;

ta sk body Producer i s
beg in

loop
−− Produce data
Shared Data := . . . ;

−− No t i f y data i s r eady
Ba r r i e r := True ;

end loop ;
end Producer ;

ta sk body Consumer i s
Rece i ved Data : I n t e g e r ;

beg in
loop

−− Wait f o r data
wh i l e not Ba r r i e r l oop

n u l l ;
end loop ;

Rece i ved Data := Shared Data ;
B a r r i e r := Fa l s e ;

−− Work wi th produced data
. . .

end loop ;
end Consumer ;

The use of Volatile ensures (both in Ada 2005 and Ada 2012) the strict ordering within tasks because reads
and updates of volatile or atomic objects are defined as external effects of the program (RM C.6 (20)), and
the execution of the program must be consistent with the order imposed to these external events (RM 1.1.3
(15)). It means that, in task Producer, Shared Data will always be updated before setting Barrier to True.

This feature makes things work as expected (Consumer reading Shared Data when it has already been
written) on monoprocessors, according to Ada 2005 rules. However, in Ada 2005, nothing guarantees that
this will work on multiprocessors. Even when Producer ’s processor (0 ) sees the correct order of updating
the data and then updating the barrier, the effect of multi-level caches may make that Consumer ’s processor
observes a different order, hence reading an obsolete value of Shared Data.

This problem is addressed by Ada Issue 117 [5], that modifies the semantics of pragma Volatile to require
that all tasks of the program (on all processors) see the same order of updates to volatile variables.

Depending on the memory consistency model implemented by the target, ensuring this new order may
require the insertion of special machine instructions, called memory barriers or memory fences (at the cost
of reduced performance).

In Ada 2005 there were two aspects addressed by pragma Volatile: one was about the order of execution
when reading or updating volatile variables, which has been made stricter in Ada 2012 to address the need
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of controlling reordering on multicore architectures; the second was about reading and writing directly to
memory, which has been left out of Ada 2012.

Note that the semantic change to pragma Volatile is not appropriate for memory-mapped devices, that
require a means to enforce reads and updates to be made directly to memory. pragma Atomic should be
used in these cases, which forces loads or stores of atomic objects to be implemented, where possible, by a
single load or store instruction (RM C.6 (23/2)).

In GNAT, the intention is to keep the notion of “volatile” consistent with that existing in the gcc back-
end. However, we are actively working on this issue. The GCC sync synchronize built-in seems to be what
is needed for implementing the new Ada 2012 semantics: it inserts a barrier after an atomic store, and both
before and after an atomic load. GCC knows the right primitives for each architecture, transforming the
built-in into the required object code.

6 Execution-time accounting of interrupts

During the last IRTAW 14, two independent proposals were submitted on the issue of execution time ac-
counting of interrupt handlers (Gregertsen et al. [13] for Ravenscar and Aldea et al. [16] for the general
case). They both agreed that charging the execution time of interrupts into the currently running task does
not help accurate accounting. Ada Issue 170 [6] was define from these works, to enable the time spent in
interrupt handlers to be accounted for separately from time spent in tasks.

Apart from MaRTE [16], separate accounting of interrupt execution time is not available in operating sys-
tems targeted by the GNAT development environment. On these systems, both Interrupt Clocks Supported
and Separate Interrupt Clocks Supported are set to False to reflect that the execution time of interrupt
handlers is not accounted separately.

GNAT for Ravenscar bare board targets, where the Ada run-time library provides all the required support,
accounts separately the execution time of individual interrupt handlers. The interrupt wrapper (the one
which calls the user-defined interrupt handler) has been modified to update CPU clocks before and after the
execution of the interrupt handler.

The model implemented is that the elapsed execution time is charged to the executing task or interrupt
when a dispatching event occur. Dispatching events are defined as the following occurrences:

• Context switch between tasks

• Interrupt delivery (start interrupt handler). It can be either an interrupt preempting a running task
or another interrupt (for proper tracking of individual interrupt handlers when interrupts are nested)

• Interrupt return (end interrupt handler). It can return to either a preempted task or interrupt (sym-
metric to the previous point)

• Task preempting an interrupt. Task can have a priority in the Interrupt Priority range so this case
must be taken into consideration

• Task returning to a preempted interrupt (symmetric to the previous point)

• Task or interrupt preempting the idle activity. When no task is ready to execute and there is no
interrupt to be delivered, an idle loop is executed whose execution time is obviously not charged to
any task or interrupt. However, this event requires start accounting for the preempting entity

• Task or interrupt returning to the idle activity. At this point, the elapsed execution time is charged
to the running entity and then execution time accounting is temporarily disabled (symmetric to the
previous point)

The overhead associated to monitoring execution time is not huge, but is pervasive. The implementation
minimizes this overhead when execution-time clocks are not used (whenever package Ada.Execution Time is
not with’ed) using weak symbols (see section 3 for details about this mechanism).
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7 New scheduling policies

There was a considerable amount of effort in Ada 2005 related to the introduction of new scheduling policies
(non-preemptive, round-robin, EDF, priority-specific dispatching). Ada 2012 does not add any new schedul-
ing policy, but it provides some new capabilities to already existing dispatching policies [8, 2] and some
fixes [3].

No work has been performed yet on GNAT for these new functionalities, because they rely on functionality
which is not provided by any GNAT supported targets (only implemented in MaRTE [17]).

8 Conclusions

Ada 2012 comes with interesting additions for real-time programming, and GNAT already supports an
important part of it. Some others are in the pipeline.

The biggest addition in GNAT is the support for Ravenscar on multiprocessor bare board platforms,
and the support for task affinities and multiprocessor dispatching domains on platforms supporting it (such
as Linux, Windows, Solaris and VxWorks). A couple of issues worth fixing in the current definition of
package System.Multiprocessors.Dispatching Domains were found, but the Ada 2012 model seems to provide
the appropriate support and flexibility for designing analyzable systems taking advantage of multiprocessor
hardware.

Task barriers for parallel task synchronization have been implemented, using the underlying POSIX
barriers when available, increasing the potential parallelism of applications using it.

Execution-time monitoring in GNAT for Ravenscar bare board targets has been extended with the support
for accounting separately the execution time of individual interrupt handlers. Other targets do not support
it because the required functionality is not present in the underlying operating system.

An interesting and important point in defining the semantics of Ada applications running on multipro-
cessor (parallel) architectures is the mechanism to ensure memory consistency. pragma Volatile has been
modified to make the life of Ada users on multiprocessors easier, at the cost of some performance penalty,
and some work on compiler vendor’s plate. In GNAT, we are working on the addition of the required memory
barriers with the help of the GCC back-end.

Finally, the area of modifications to new scheduling and dispatching policies has not yet received much
attention in GNAT. The reason is that the required capabilities are not provided by mainstream operating
systems.
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[18] José F. Ruiz. Towards a Ravenscar extension for multi-processor systems. Ada Letters, XXX(1):86–90,
April 2010.

[19] S. Swaminathan, J. Stultz, J. F. Vogel, and Paul E. McKenney. Fairlocks — a high performance fair
locking scheme. In International Conference on Parallel and Distributed Computing Systems, pages
241–246, 2002.

Ada Letters, April 2013 52 Volume XXXIII, Number 1



Abstract1

This paper presents a proposal to develop High-integrity Distributed Real-Time (HDRT) systems by integrating the
real-time end-to-end flow model with the Ravenscar profile. Although this profile is being widely used in the
development of single-processor critical hard real-time systems, further research is required to apply this profile in a
distributed environment. This work is built upon the endpoints pattern, a technique that we have used to integrate the
end-to-end flow model into Ada’s Distributed Systems Annex (DSA). We adapt our previous work to the requirements
of the Ravenscar profile. Therefore, this paper gives a step forward and discusses the modifications needed to make a
specific instance of the endpoints pattern compatible with Ravenscar.

1. Introduction

High-integrity Real-Time (HRT) systems have reliability requirements that must be guaranteed throughout the
execution of application. In order to guarantee those requirements, a thorough analysis of the system is required,
resulting in a challenging process that must cope with strong restrictions and compliance to standards and formal
development methods. For this purpose, Ada provides a set of facilities that include the “Guide for the use of Ada in
high integrity systems” (GA-HI) [1], SPARK [2] and the Ravenscar profile [3]. While both of the former mainly
focus on the sequential part of the language, the latter deals with the concurrent aspects of Ada.

Traditional approaches to build real-time applications are based on the knowledge of the system workload at
design time. The schedulability of static distributed real-time systems can be analysed using techniques to determine
a priori if their timing requirements can be met or not. The model that fits best in the analysis of distributed real-time
systems is the transactional model [4][5], which is currently known as the end-to-end flow model in the MARTE
specification [6]. The work presented at the 14th IRTAW [7] discussed how this model could be integrated into the
Distributed Systems Annex of Ada (DSA) in order to support the development of analyzable real-time distributed
applications in Ada.

The focus of this paper is the integration of the real-time end-to-end flow model into the development of High-
integrity Distributed Real-Time (HDRT) systems. This topic was suggested for discussion at the 14th IRTAW [19],
where it was considered desirable to standardize a real-time distributed model that could be applied both to the full
version of Ada or to a restricted profile. In particular, this paper will explore how to adapt the Ada API proposed in
[7] to the Ravenscar profile. Furthermore, a practical implementation is also provided as a proof of concepts to
validate the usefulness of the approach. Finally, the suitability of a second approach is discussed for those systems
that follow not only the guidelines included in the Ravenscar profile but also the restrictions defined in the GA-HI
and SPARK documents.

This document is organized as follows. Section 2 introduces the previous work done to support the end-to-end
flow model in distributed Ada following the DSA. Section 3 analyses in detail the new approach, describing the
aspects required to make the interface compatible with the Ravenscar profile. Section 4 deals with the
implementation of the approach within a High-Integrity (HI) middleware. Other solutions to use the end-to-end flow
model with Ravenscar are considered in Section 5. Section 6 introduces complementary research work in this field by
other authors and points out how to fit our approach in their proposals. Finally, Section 7 draws the conclusions.

1. This work has been funded in part by the Spanish Ministry of Science and Technology under grant number TIN2008-06766-
C03-03 (RT-MODEL) and by the European Commission under project FP7/NoE/214373 (ArtistDesign).
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2. The end-to-end flow model and the endpoints pattern

A key element in the development of distributed real-time systems is the schedulability analysis, normally based
on a model that represents the timing behaviour of the application. With this aim, a real-time system can be modelled
as a set of end-to-end flows that describe parts of an application consisting of multiple threads executing code in
processing nodes, and exchanging messages through communication networks. Each end-to-end flow may be
triggered by the arrival of one or more external events thereby causing the execution of activities in the processor or
in the networks. These activities, in turn, may generate additional events, possibly with associated end-to-end timing
requirements, which could trigger other activities involved in the end-to-end flow. 

The work presented in [7] proposed mechanisms to express complex scheduling and timing parameters in a
distributed system: the endpoints pattern. This proposal was aimed at supporting the event-driven end-to-end flow
model and was integrated in different middlewares (for Ada DSA over GLADE [8] and for CORBA and Ada DSA
over PolyORB [9]) enabling the use of interchangeable scheduling policies.

The endpoints pattern identifies two different schedulable entities. For the processing nodes, handler tasks
intended to execute remote calls, and for the network, endpoints or communication points which are used to transport
messages through the network. To customize the communication layer and handler tasks, the proposal in [7] defines a
set of interfaces to explicitly create and configure both schedulable entities with the appropriate scheduling
information. 

Complete support for the end-to-end flow model is provided by a single parameter, called Event_Id, which
represents the event that triggers the execution of an activity within its end-to-end flow. Under this approach,
middleware is responsible of updating the scheduling parameters and managing the chain of events within the end-to-
end flow, providing a separation of concerns between the logic of application and the real-time aspects, from a
software engineering perspective.

In the end-to-end flow model, external events trigger the end-to-end flows, and the setting of an identifier of those
events is the only operation that our model requires the application code to perform. The rest of the end-to-end flow
elements, including the communication endpoints, the handler tasks, and all the scheduling parameters, can be
described as a part of a configuration operation. After this configuration phase, the system will remain in a steady
state. Furthermore, the real-time configuration of a distributed application following this model can be generated and
validated automatically using CASE (Computer-Aided Software Engineering) tools.

Figure 1 illustrates a linear end-to-end flow performing one asynchronous remote procedure call through three
processors and using one communication network. This example can represent a system that has to take some data
from the environment, send it to another processor to be analyzed, and finally cause an action to occur in another
place. The end-to-end flow is composed of five activities: (1) reading some data, (2) sending the data to be analyzed,
(3) processing the data to perform a control actuation, (4) sending the actuation command and (5) performing an
action depending on the command received. Figure 1-A shows the sequence of APCs (Asynchronous remote
Procedure Calls, as defined in the DSA [3]) while Figure 1-B illustrates the equivalent real-time model.

Figure 1-C shows the details of the events, activities and processing resources (the processors or the network)
according to the endpoints pattern. By setting the initial event e1, the application task triggers the activation of the
end-to-end flow that generates the output event e2. This event causes a message to be sent to perform the first remote
call. CPU-2 identifies the incoming event in the receive endpoint and transforms it to the corresponding event e3.
Then, the middleware sets the appropriate scheduling parameters for the handler task accordingly to the event
received. After processing the data, a message is sent to make the remote call to CPU-3 with event e3. Finally, the
middleware in CPU-3 will transform the incoming event into event e4 and will set the corresponding scheduling
parameters for the actuation. This action completes the execution of the end-to-end flow.

The set of interfaces included in [7] provides support for the real-time model by means of the specification of all
the resources involved in the end-to-end flow. This API consists of the following Ada packages:

• Event_Management, supporting the description of the end-to-end flow architecture via event transformations
performed automatically at the transformation points.
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• Processing_Node_Scheduling, containing the operations to configure the handler tasks and to assign their
scheduling parameters.

• Network_Scheduling, containing the endpoint configuration and assigning the scheduling parameters for the
messages in the communication networks.

A detailed description of those interfaces can be found in [7]. Although this API is useful to build distributed real-
time systems, it has not been designed to consider the restrictions imposed by the Ravenscar computational model, so
the following sections will explore the strategy to allow the integration of the end-to-end flow model in the
development of HDRT systems.

3. Adapting the endpoints pattern to the Ravenscar profile

The Ravenscar profile defines a set of restrictions in the system concurrency model, thus imposing a review of the
original proposal [7]. In particular, the following restrictions must be considered:

• Only the FIFO_Within_Priorities dispatching policy is allowed

The approach proposed in [7] is independent of the selected policy. However, this flexibility does not violate this
restriction because the choice of available policies remains implementation-defined. Furthermore, keeping this
flexibility enables future profile extensions as proposed in [10].

• The set of tasks in the system is fixed and created at library level

The Processing_Node_Scheduling interface provides operations to create handler tasks at configuration time,
which it is not Ravenscar compliant, and thus requires a revision of the proposal in [7]. 

• Tasks have static scheduling parameters

Although the current approach allows handler tasks to update their scheduling parameters at runtime according to
the retrieved Event_Id, this feature is not compatible with Ravenscar and must be disabled. However, the
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Figure 1: End-to-end flow model and the endpoints pattern
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transmission of the Event_Id parameter remains necessary in order to allow sharing the same handler task among
multiple end-to-end flows, if needed.

Although the end-to-end flow model does not violate any further Ravenscar restrictions, there are some other
aspects that middleware implementations should take into account:

• Prevent the use of task attributes

The middleware implementation for Ada DSA and CORBA [9] uses task attributes to store the Event_Id parameter.

• All tasks are non-terminating

The Processing_Node_Scheduling interface provides operations to destroy handler tasks that must be disabled.

The Ravenscar profile has mainly been applied for the static analysis of applications running within a single or
multiple nodes but without considering the communication networks in the analysis. However, the real-time
distributed model proposed in this work includes the endpoints as schedulable entities representing the
communication points within the network. The ARINC 653 [20] specification follows a similar approach through the
definition of ports, entities that enable the interpartition and intrapartition communication and behave as the input
points to a real-time network (e.g., AFDX [21]).

Each of these considerations must be addressed within the set of interfaces described in the previous section. The
modifications proposed over the original API in [7] are detailed in the following subsections.

3.1. Event Management Interface

End users should configure the sequence of events within an end-to-end flow, and the middleware will be in charge
of automatically setting the appropriate event at the transformation points of the remote call as shown in [7]. This
interface is Ravenscar compliant and therefore it does not require any modification from the original, which is
presented below.

package Ravenscar.Distributed.Event_Management is

procedure Set_Event_Assocation (Input_Event : Event_Id; Output_Event : Event_Id);

function Get_Event_Association (Input_Event : Event_Id) return Event_Id;

procedure Set_Event_Id (New_Event : Event_Id);

function Get_Event_Id return Event_Id;

end Ravenscar.Distributed.Event_Management;

3.2. Network Scheduling Interface

The overall response time of a distributed system is strongly influenced by the underlying networks and therefore
networks are required to be scheduled with appropriate techniques. This API addresses this aspect by making the
communication endpoints visible, and by associating scheduling parameters to the messages sent through them. The
approach in [7] is already Ravenscar compliant and thus it can remain unaltered. However, the use of class-wide types
and operations are disallowed in HI systems [1][2]. As a result, the corresponding Network Scheduling Interface is
defined as follows:

package Ravenscar.Distributed.Network_Scheduling is

type Message_Scheduling_Parameters is abstract tagged private;

procedure Create_Receive_Endpoint
(Net      : Generic_Network;
Port : Generic_Communication_Port;
Endpoint : out Receive_Endpoint_Id) is abstract;
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procedure Create_Send_Endpoint
(Param : Message_Scheduling_Parameters;
Dest_Node : Generic_Network_Address;
Event : Event_Id;
Net : Generic_Network;
Dest_Port : Generic_Communication_Port;
Endpoint : out Send_Endpoint_Id) is abstract;

procedure Create_Reply_Receive_Endpoint
(Net      : Generic_Network;
Event_Sent : Event_Id;
Port : Generic_Communication_Port;
Endpoint : out Receive_Endpoint_Id) is abstract;

procedure Create_Reply_Send_Endpoint
(Param     : Message_Scheduling_Parameters;
Dest_Node : Generic_Network_Address;
Event     : Event_Id;
Net       : Generic_Network;
Dest_Port   : Generic_Communication_Port;
Endpoint : out Send_Endpoint_Id) is abstract;

procedure Destroy_Receive_Endpoint (Endpoint : Receive_Endpoint_Id) is abstract;

procedure Destroy_Send_Endpoint (Endpoint : Send_Endpoint_Id) is abstract;

private
type Message_Scheduling_Parameters is abstract tagged ...;

end Ravenscar.Distributed.Network_Scheduling;

The operations provided to destroy endpoints are not strictly necessary in this kind of static systems and can be
removed. However, in order to keep similar interfaces for full and restricted Ada, both operations have been included.

Extensions of the Message_Scheduling_Parameters tagged type will contain the specific network scheduling
parameters that must be associated to a specific endpoint. Furthermore, each scheduling policy must implement
operations to map its own scheduling parameters (e.g., priorities) onto extensions of this private type. However, the
use of abstract types in HI systems can be controversial, as they are forbidden by SPARK [2] but allowed by GA-HI
[1]. 

3.3. Processing Node Scheduling Interface

Handler tasks are responsible for awaiting remote requests and processing them. As we stated before, the proposal
in [7] to create and manage handler tasks relied on the dynamic creation of tasks which is forbidden in Ravenscar
systems. The new API uses a set of Ada packages instead: a Processing_Node_Scheduling package to perform the
registration and identification of tasks in the system, and a set of child packages to create tasks with the appropriate
scheduling parameters.

One child package per scheduling policy is required. Since handler tasks must be created explicitly at library level,
the new API considers the creation of tasks through a generic package which has been demonstrated to be a suitable
approach [11]. This generic package includes the following parameters and operations:

• Task scheduling parameters: The scheduling parameters are set statically via a pragma.

• Handler_Task_Callback: Procedure used as callback for each middleware implementation. There is only one input
parameter: the endpoint where the handler task will wait for an incoming request. How to create and obtain the
endpoint is implementation-defined.

• Create_Handler_Task_Endpoint: This function returns the receive endpoint where the calling handler task will
wait for incoming requests. Since the communication endpoints are created through the API (i.e. during the
configuration phase), and handler tasks are created at library level, both entities must be created in a predefined
order.
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Furthermore, this generic package can be completed by including several optional subprograms and parameters;
for instance, to execute the basic initialization operations required within each middleware implementation, to
execute recovery procedures when any error is detected or to specify basic properties associated to a task (e.g., the
stack size). 

Finally, the use of generics, although used in many safety-critical research Ada projects [11][12], is debatable, as it
is forbidden by SPARK but allowed by GA-HI. As an example, the following package represents the generic unit
used for fixed priorities scheduling:

--  Dependences are omitted
generic

Handler_Task_Priority   : System.Priority;

with procedure Handler_Task_Callback (Endpoint : Receive_Endpoint_Id);

with function Create_Handler_Task_Endpoint return Receive_Endpoint_Id;

package Ravenscar.Distributed.Processing_Node_Scheduling.Fixed_Priorities is

task FP_RPC_Handler_Task is
pragma Priority (Handler_Task_Priority);

end FP_RPC_Handler_Task;

end Ravenscar.Distributed.Processing_Node_Scheduling.Fixed_Priorities;

3.4. Example of real-time configuration

The real-time configuration file shall include the code required to create and configure each end-to-end flow
defined in the system. This section describes the configuration required for the scenario illustrated in Figure 1. As an
example, we will show how to generate the configuration code for CPU-2, but a similar procedure could be followed
for CPU-1 and CPU-3. The configuration code for CPU-2 should include the following elements: 

• Handler_Task_1 package: It is responsible of the creation of a handler task, the creation/retrieval of the associated
receive endpoint and the callback to the main loop defined in the middleware implementation.

• Set_Partition_Configuration procedure: It performs the configuration of the rest of the end-to-end flow elements
(communication endpoints, scheduling parameters and event association).

As a consequence, the Ada specification for the configuration of CPU-2 is shown below:

package Partition_2_Configuration_File is

package Handler_Task_1 is new Ravenscar.Distributed.Processing_Node_Scheduling.Fixed_Priorities
(Handler_Task_Priority               => Handler_Task_1_Priority,
Create_Handler_Task_Endpoint => Partition_2_Configuration_File.New_Receive_Endpoint,
Handler_Task_Callback   => MW_Implementation.RPC_Main_Loop);

...
procedure Set_Partition_Configuration;

end Partition_2_Configuration_File;

On the other hand, the configuration code for CPU-2 (Set_Partition_Configuration procedure) should include the
following procedure calls:

• Set_Event_Association: As can be seen in Figure 1, CPU-2 receives e2 as incoming event and transforms it to event
e3. Such mapping between events remains registered in the middleware.

• Create_Send_Endpoint: This partition considers two network transmission activities: one of them is for sending
messages and thereby associated with one send endpoint with its specific scheduling information. The other
network activity corresponds to the incoming messages and therefore it must be mapped to a receive endpoint. This
endpoint is now created by the associated handler task to avoid the complexity of synchronization issues during the
creation of endpoints (configuration phase) and handler tasks (library level).

Ada Letters, April 2013 58 Volume XXXIII, Number 1



Using the procedures mentioned above, the Ada package body for the configuration of Partition 2 is shown below:

package body Partition_2_Configuration_File is

procedure Set_Partition_Configuration is
-- The definition of variables is omitted
begin

  --  Set event associations
 Set_Event_Assocation  (Input_Event  => e2, Output_Event => e3);

--  Create one send endpoint
 Create_Send_Endpoint

 (Param => Msg_Scheduling_Parameters_e3,
 Dest_Node => CPU-3,
 Event => e3,
 Net => Default_Network,
 Dest_Port => Rcv_Port_Partition_e3,
 Endpoint => Snd_Endpoint_Id_e3);

end Set_Partition_Configuration;

end Partition_2_Configuration_File;

Finally, these real-time configuration files can be generated and validated automatically using CASE tools to ease
the development of large scale systems. Next section briefly describes the implementation of our proposal in a
middleware for HI systems. This implementation can be integrated within an MDE (Model-Driven Engineering)
process as it is described in [17].

4. Implementation of the endpoints pattern within a HI middleware

This section describes how the endpoints pattern has been integrated into Ocarina and PolyORB-HI [12], a
software tool suite that includes a complete framework to build HDRT systems. 

The architecture of Ocarina comprises two different parts: a frontend, which processes the system model described
in the input file, and a backend, which implements the strategies to generate the source code for different targets. The
current version supports the AADL modeling language as input and several targets, such as those based on the
PolyORB-HI middleware, as output.

PolyORB-HI is a lightweight distribution middleware compatible with the restrictions specified by the Ravenscar
profile. It is distributed with the Ocarina tool as an AADL runtime that provides all the required resources (i.e. stubs,
skeletons, marshallers and concurrent structures) to build high-integrity distributed systems. The current software
release provides three runtimes depending on the target system: PolyORB-HI-C, PolyORB-HI-Ada and PolyORB-
HI-QoS.

To validate the proposed approach, Ocarina and PolyORB-HI have been extended to provide a new backend or
code generation strategy called PolyORB-HI-Endpoints, which, together with the implementation of the endpoints
pattern, automatically generate the distribution source code. This Ravenscar-compliant source code is based on the
real-time end-to-end flow model and makes use of the proposed interfaces.

This architecture can be extended to include the automatic generation of the real-time configuration code as
illustrated in Figure 2. Under this approach, the MAST [18] model can be auto generated from the system model
(e.g., through a new Ocarina backend or an external AADL2MAST conversion tool [17]) and thus providing the
necessary support to perform a static verification of the end-to-end deadlines. As a result of the analysis, a real-time
configuration file is created containing all the timing parameters required. Further details can be found in [17].

A prototype implementation of the PolyORB-HI-Endpoints backend on x86 architecture and an UDP-based
network has been developed as a proof of concepts. This prototype uses fixed-priority scheduling policies for both
schedulable resources: processors and networks. The network uses the 802.1p specification (which is included in the
document 802.1q [13]) to prioritize different message streams. The real-time configuration file is currently generated
by hand, although automatic generation of the real-time configuration code is under development following the
approach described in Figure 2. 
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5. The endpoints pattern and static distributed Ada

In Section 3, we have proposed the adaptation to Ravenscar of an API designed to support the timing analysis of
distributed real-time systems in full Ada. Although the changes suggested are compatible with the Ravenscar profile,
they are not exempt from some points of controversy, summarized as follows:

• The use of abstract types and generic units. Although both features are used in some HI research projects, they
are not included in SPARK.

• The use of a configuration interface. While the Ravenscar profile seems to fit better in an absolute static system,
the use of the API presents a more dynamic nature: the system is static but only after the configuration phase.

As a consequence, it is reasonable to make a step forward and ask if the adaptation is worthy enough. One of the
most important advantages of defining the interface is that it represents a quite similar solution for full and restricted
Ada. However, another kind of solution could fit better in HI systems. The next list briefly summarizes the minimum
requirements to develop HDRT systems following the end-to-end flow model. As a consequence, the configuration of
the application can be divided into three phases:

• Configuring the partition of the program, as required by the DSA. This step is implementation-defined.

• Identification and configuration of the schedulable entities. This step should contain the following semantics:

- A distributed real-time application defines two kind of schedulable entities: the tasks for the processor, and
the messages for the networks.

- The implementation shall provide means to explicitly create and configure each schedulable entity and
associate the handler tasks with the appropriate receive endpoint.

• Identification and configuration of the different end-to-end flows. This step should contain the following
semantics:

- The end-to-end flow is a conceptual entity that describes a sequence of processing steps (e.g. the execution of
a piece of code or the transmission of a network message).

- The implementation shall provide means to explicitly set the initial event for the user task. This can be
achieved by defining a new pragma associated to tasks to identify the starting end-to-end flow.

- The implementation shall provide means to explicitly perform the event mapping.

- The implementation shall include the Event_Id parameter as part of the network message if a single handler
task may process several requests matching different end-to-end flows.

Figure 2: Ada Toolchain for HDRT systems
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6. Related work

In this section we briefly present some of the research which aims to extend the Ravenscar profile to address
HDRT systems. These works can be classified as follows: 

• Ravenscar and Ada DSA. These works are mainly focused on the adaptation of the Ada DSA to be Ravenscar
compliant as discussed in [15] and [16]. The main disadvantage of this option is the lack of a standard real-time
distributed framework.

• Ravenscar and a custom mechanism to perform the distribution. Under this approach the HDRT systems are
built by automatically generating source code from architectural descriptions (i.e. system models). A representative
work is the tool suite Ocarina, which has been used in this paper.

Our approach does not only rely on the Ada DSA to make the distribution but it can be applied to different
distribution models [14]. Nevertheless, it can be considered as a complementary work to [15] and [16] since the end-
to-end flow model provides a feasible architecture to perform a static timing analysis in which the timing
requirements of the applications can be validated. Our approach does not deal with other important features required
in HI systems and detailed in such references, like the coordinated elaboration of partitions or the bounded size of
network messages. Moreover, our real-time distributed model still provides support for some of the restrictions
discussed in the previous IRTAWs: 

1. The use of synchronous remote calls (RPCs). This kind of communication is amenable to timing analysis
and current techniques have actually reduced the pessimism introduced in a wide range of scenarios.
However, there exist typical situations in distributed systems whose analysis can be still improved; for
instance, the existence of simultaneous activations owning to the same end-to-end flow (i.e. a linear end-to-
end flow with the response time greater than the period). The endpoints pattern supports the use of RPCs by
defining the reply endpoints.

2. The use of concurrent remote calls. In distributed systems, the buffering of incoming requests usually
relies on the services provided by communication networks, such as in AFDX [21] or SpaceWire [22].
Furthermore, the problem of dimensioning a wait queue to hold the incoming requests is already considered
by the timing analysis techniques. Therefore our approach does not preclude the reception of concurrent
remote calls.

3. The use of nested RPCs. The end-to-end flow model is able to compute the waiting times associated to the
nested remote calls and thus, from the real-time perspective, the response time analysis can be performed
except when the response time of the end-to-end flow is greater than the period.

7. Conclusions

In this work, we have presented a specific model of the endpoints pattern compatible with the Ravenscar profile to
provide the means to build and analyse real-time end-to-end flows in HDRT systems. The initial pattern, which was
proposed for full Ada at the 14th IRTAW, was not compatible with the Ravenscar profile and required several changes
to make a compatible version. 

The adaptation of the endpoints pattern has involved a set of modifications mainly related to the way in which
handler tasks are created and assigned their scheduling parameters. However, the solutions provided in this paper
have considered the restrictions included not only in the Ravenscar profile but also in the “Guide for the use of Ada in
high integrity systems” and SPARK. As a consequence, we have identified some points of controversy between those
documents, including:

• The use of abstract types. In this case, our API defines a set of abstract subprograms intended to be overridden by
each scheduling policy implemented. Although this approach is allowed by GA-HI, SPARK explicitly excludes the
use of abstract types.

• The use of generic units. Under our approach, the API considers the creation of tasks through a generic package.
Although this feature has been used in several safety-critical research Ada projects, the current version of SPARK
does not allow it.
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Therefore, it would be convenient to clarify both controversial features before submitting a final version of our
proposal. Although the solution is based on a set of APIs, this paper has also explored the use of an even more static
approach that can be applied at compilation time and thus can fit better in the development of HDRT systems.
However, the definition of a generic solution for full and restricted Ada would be desirable.
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Abstract
In this paper we present the rationale, the status and the planned enhancement of a set of code archetypes

that implement common programming patterns suited for the development of Ravenscar-compliant real-time
systems. There have been other attempts at building software frameworks that ease the construction of real-
time software systems. Ours is not intended for direct access by the user, but for deployment in the back-end
code generation engine of a model-based tool environment. A further distinguishing characteristic of our
patterns is that they foster the principle of separation of concerns, whereby the functional code of the system
(which we require to be purely sequential) stays under the responsibility of the user, whereas the code that
realizes the intended concurrency and real-time semantics is obtained by instantiation of predefined, correct
by construction, archetypes.

1 Context and motivations
The development of high-integrity real-time systems is subject to stringent process and product requirements.
The nature of those systems requires designers to prove the correctness of the system behaviour in the time
dimension, which is typically sanctioned by use of some schedulability test or analysis.

Modern development paradigms, such as component-oriented approaches [1] and Model-Driven Engineer-
ing [2] foster the early analysis of the system under development, based on an architectural description of it.

Following the MDE development paradigm, the designer decorates the architectural elements with attributes
in the dimensions of interest to analysis, e.g., concurrency and time for the purposes of this work. Those at-
tributes express either requirements on the timing behaviour of the software, such as the period of a periodic
operation or the minimum inter-arrival time (MIAT) of a sporadic operation, or estimates and bounds to char-
acteristics that depend on system execution, such as the worst-case execution time (WCET) of all units of
scheduling.

Early analysis is an important engineering bonus, for it enables the designer to rapidly iterate, at negligible
cost, before committing the implementation, until the predictions on the timing behaviour meet all the applicable
requirements.

The wisdom of this approach is increasingly accepted within the industrial community. Yet, the prevalent
application of that approach overlooks the problem that guarantees must be had that the system at run time actu-
ally behaves in accord with the analysis predictions. It is commonly experienced in fact that the implementation
may in many, possibly subtle, ways violate assumptions or constraints depended upon by the analysis theory.
Notorious examples include the accuracy of the WCET bounds, the guarantee of minimum inter-arrival, the
absence of task self-suspension. What the user often fails to appreciate is that the attributes used as input for
the analysis equations form the ”frame” in which the analysis results hold; for a system validated by analysis,
those attributes shall be regarded as ”properties” to be preserved: any deviation from them incurred at run time
may jeopardize the analysis guarantees.

It is therefore necessary to complement the provisions for early analysis with a methodology that caters for
property preservation, building on the following constituents:

1. an analysis framework to statically analyse the system;
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2. a programming model that enforces the analysis assumptions, permits to express exclusively the semantics
imposed by the analysis theory and conveys in the implementation the desired properties;

3. an execution platform that is capable of warranting the properties of interest.

The programming model, which is the subject of this paper, can be realized by adopting a subset of a
programming language and, within it, an array of code archetypes whose concurrency semantics conform to the
analysis model.

We are interested in the Ravenscar profile (RP) [3], which was one of the outputs of the 8th International
Real-Time Ada Workshop (IRTAW). With the Ada 2005 revision [4] it became a standard part of the Ada
language. The RP is built on the intent to reject all language constructs that are exposed to unbounded execution
time or non-determinism. Its reduced tasking model matches the semantic assumptions and communication
model of real-time theory, the response-time analysis strand [5] in particular. For this reason, the RP is an ideal
backbone to our programming model.

To complement the RP in the definition of our reference programming model, we need to adopt a set of code
archetypes that help us convey in the implementation the desired properties and support the methodological
choices that underpin our development process.

The cornerstone of our development methodology is the adoption of a long-known yet often neglected
practice, first advocated by Dijkstra in [6]: separation of concerns. This principle aims to cleanly separate
distinct aspects of software design and implementation, as well as to enable separate reasoning and focused
specification.

In our approach, we strive to attain as much separation as possible between functional and extra-functional
concerns. At implementation level, we seek separation of the functional/algorithmic code of a ”component”
(our unit of design), from the code that manages the realization of the extra-functional requirements regarding
tasking, synchronization and time-related aspects.

This choice earns us a number of interesting advantages.
Firstly, the separation of the functional part from extra-functional concerns permits to reuse the sequential

code of the functional part independently of the realization of the extra-functional concerns that applied when the
component was created; this may considerably increase the reuse potential of the software (i.e., the opportunity
of its possible reuse under different functional and extra-functional requirements).

Secondly, the separation of sequential algorithmic code from the code that manages all other concerns
facilitates timing analysis, as the impact of the sequential code on the worst-case execution time can be more
easily and accurately evaluated when isolated from language constructs related to tasking, synchronization and
time.

The code archetypes adopted to complete the formulation of the programming model of our interest shall
then support this vision, while also striving to fit the needs of systems with the limitation and resource constraints
typical of real-time embedded platforms.

One of the results of the ASSERT1 project was the development of a set of RP-compliant code archetypes
adhering to our vision on separation of concerns and amenable to automated code generation. Those archetypes
were developed as an evolution of previous work on code generation from HRT-HOOD to Ada (see for example
[7] and [8]).

In the CHESS2 follow-up project, we are revising those code archetypes along two axes: (i) increasing their
expressive power, by adding features and lifting some of their current limitations; (ii) revising their structure to
better express them with the applicable elements of the latest evolution of Ada.

The rest of the paper is organized as follows. In section 2 we provide a general description on the struc-
ture of the code archetypes, as they were finalized for the ASSERT project. We highlight their advantages,
disadvantages and limitations. In section 4 we comment on the evolution of these archetypes both as regards
their supported feature and improvement from the Ada language standpoint. Finally in section 6 we draw some
conclusions.

1”Automated proof-based System and Software Engineering for Real-Time systems”, FP6 IST-004033 2004-8
2”Composition with Guarantees for High-integrity Embedded Software Components Assembly”, ARTEMIS JU grant nr. 216682, 2009-

2012
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2 Structure of the code archetypes
As in ASSERT, our code generation targets the Ada Ravenscar Profile [3] and uses the property-preserving
archetypes [9] that we developed at the end of that project.

The task structure that we use as a base for the code mapping approach takes inspiration from HRT-HOOD
[10], from which we also inherit the terms OBCS and OPCS.

An important mark of our archetypes is to achieve complete separation between the algorithmic sequential
code of the software system and the code that manages concurrency and real-time.

The satisfaction of this goal confirms at implementation level and at run time our claim that it is possible to
develop the algorithmic contents of the software (that is, the component behaviour) independently of tasking and
real-time issues. The latter are exclusively derived from the extra-functional attributes declaratively specified
on component instances and completely managed by the code generated by the design environment.

Figure 1: Generic task structure

We achieved the above goal by encapsulating the sequential algorithmic code in a specialized task structure.
Figure 1 depicts the generic structure of our task archetypes.

The library of sequential code, which may encompass as many cohesive operations as the designers wishes
to attribute to a single executing component, is enclosed in a structure that we term the Operational Control
Structure (OPCS). The code in the OPCS library is executed by a Thread, which represents a distinct flow
of control of the system. The task structure may be optionally equipped with an Object Control Structure
(OBCS). The OBCS represents a synchronization agent for the task; the OBCS is mandatory for sporadic tasks.
The OBCS consists of a protected object that stores requests for services issued by clients and destined to
be executed by the Thread. The interface exposed by the OBCS to the Thread reflects the Adapter pattern
[11], which allows the Thread’s invocation to the OBCS to stay unchanged regardless of the provided interface
exposed by the task structure to the outside. The combined effect of that pattern and the delegation of the
OPCS interface to the OBCS makes sure that the task internals are completely hidden from the outside, but the
provided services invoked by external clients are executed with the desired concurrency semantics.

As multiple clients may independently require any of a range services to be executed by that Thread, the
operations that post execution requests in the OBCS are protected. Upon each release, the Thread fetches one
of those requests (with FIFO ordering in the default setting) and then executes the sequential code, stored in the
OPCS, which corresponds to the request.

In summary, our archetypal entities hide their internal structure, which realize the concurrency semantics
required of them, and expose to the external world solely an interface that matches the signature of the operations
embedded in the OPCS. The different concerns dealt with by each such entity are separately allocated to its
internal constituents: the sequential behaviour is handled by the OPCS; tasking and execution concerns by the
Thread; interaction with concurrent clients and handling of execution requests by the OBCS.

In the following we provide some additional details on the structure of the three constituents of the task
structure.
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2.1 OPCS
The OPCS is an incarnation of the Inversion of Control (IoC) design pattern3 (a.k.a. Dependency Injection),
which is a popular practice in lightweight container frameworks in the Java community (e.g. Spring). The
bindings used by the OPCS to call operations of its required interface (RI) are not created by the OPCS, but are
simply provided with setter operations at system start up. (see line 9 of listing 1 and line 6 of listing 2).

The use of the IoC pattern warrants separation between the configuration of the OPCS (the bindings of the
RI and their communication endpoints) and the use of the OPCS; re-configuration of the connected end of the
component bindings is thus straightforward, as it only requires to change the binding to the OPCS.

2.2 Thread: periodic release pattern
Our code archetype for cyclic tasks allows the creation of a cyclic Thread by instantiating an Ada generic
package, passing the operation that it has to execute periodically (see listings 3 and 4).

Figure 2: Structure of a cyclic task

The archetype is quite simple. In fact, we only need to create a task type that cyclically executes a given
operation with a fixed period.

The specification of the task defines the task type for the cyclic thread. Each thread is instantiated with a
statically assigned priority and a period which stays fixed throughout the whole lifetime of the thread. The task
type is created inside a generic package, which is used to factorize the code archetype and make it generic on
the cyclic operation.

The body of the task is composed by an infinite loop. Just after elaboration, the task enters the loop and
is immediately suspended until a system-wide start time (System Start Time). This initial suspension is used
to synchronize all the tasks that are to execute in phase and let them have the first release at the same absolute
time.

When resuming from the suspension (which notionally coincides with the release of the task), the task con-
tends for the processor and executes the Cyclic Operation specified at the time of instantiation of its generic
package. Then it calculates the next time it has to be released (Next Time) and as first instruction of the subse-
quent loop, it issues a request for absolute suspension until the next period.

Whereas the code archetype is simple to understand, a few observations are in order.
Firstly, the reader should note that the Cyclic Operation is parameterless. That is not much of a surprise,

as it is consistent with the very nature of cyclic operations which are not requested explicitly by any software
client. Secondly, this version of the cyclic task assumes that all tasks are initially released at the same time
(System Start Time). Support for a task-specific offset (phase) is easy to implement: we just need to specify
an additional Offset parameter on task instantiation, which is then added to System Start Time to determine the
time of the first release of the task. The periodic release of the task will then assume the desired phase with
respect to the synchronized release of the tasks with no offset.

Finally, we must stress that – as mandated by the Ravenscar Profile – the use of absolute time and thus of
the construct delay until (as opposed to relative time and the construct delay) is essential to prevent the actual
time of the periodic release to drift.

3http://www.martinfowler.com/articles/injection.html
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2.3 Thread: sporadic release pattern
A sporadic task is a task such that any two subsequent activations of it are always separated by no less but
possibly more than a minimum guaranteed time span, known as the MIAT for minimum inter-arrival time.

As in fig.1, our sporadic task is composed of: (i) an OBCS, which external clients use to post their requests
for execution; (ii) a thread of control that waits for incoming requests, fetches the first of them from the protected
object in the OBCS (according to a given queuing policy, which defaults to FIFO) and executes with sporadic
guarantees the requested operation as provided by the OPCS. For the moment we focus on the structure of the
Thread. Later we elaborate on the OBCS and the queuing policies for incoming requests.

Listings 5-6 show the code for the sporadic Thread.
The sporadic task enters its infinite loop and suspends itself until the system-wide start time. After that:

(i) it calls Get Request(Request Descriptor T, Time), which is an indirection to the single entry of the OBCS;
(ii) after the execution of the entry (off which, as we show later on, it obtains a timestamp of when release
actually occurred and a request descriptor), the task executes the sporadic operation requested by the client
task; (iii) it calculates the next earliest time of release (Next Time) so as to respect the minimum separation
between subsequent activations. At the subsequent iteration of the loop therefore the task issues a request for
absolute suspension until that time and thus it will not probe the OBCS for execution requests until the required
minimum separation will have elapsed.

In the simplest case, the sporadic task is used to execute a single operation. However, the descriptor of the
fetched request can be used to discriminate the operation to perform according to the operation ”type”. This
can be done in a case statement (see line 13 in listing 6). In our case, if we fetch a request of type START REQ
or ATC REQ we simply execute My OPCS, that will dispatch to the requested target operation. We clarify the
dispatching mechanisms as we complete the picture for our task structure by describing the OBCS.

2.4 OBCS and modifiers
The OBCS is the synchronization agent for incoming requests destined for execution by the Thread. The OBCS
is also the place where we deal with queueing concerns and we specify the release protocols for the task.

Figure 3: Sporadic Task with modifiers

Suppose that we want to create a sporadic task that at each release can execute either operation Op1 or
operation Op2, according to the incoming request issued by clients (see Fig. 3). Gathering different operations
into a single cohesive library, to have them executed by the same task is a fairly common need in real-time
systems, especially when the execution platform has scarce computational power and memory resources.

Furthermore, we may also want to establish a relative ordering of importance between Op1 and Op2. We
consider Op1 as the nominal operation of the sporadic (the operation normally called by clients) and we term
it START operation; Op2 is instead an alternative operation that can be called by clients, termed ATC. Then,
we stipulate that pending requests for execution of Op1 are served by the sporadic task in FIFO ordering, but
requests for Op2 take precedence over pending requests of Op1. Op2 is nicknamed ”modifier” operation, and
causes a one-time (as opposed to permanent) modification of the nominal execution behavior of the task.

We encapsulate the implementation of this policy and simply expose to clients of this sporadic task a set
of procedures with the signature of Op1 and Op2; the role of these procedures is to reify (akin to serializing,
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Figure 4: OBCS with dedicated queue for modifiers

only at a higher level of abstraction) the corresponding execution requests. The invocation (type and actual
parameters) is recorded in a language-level structure and stored in the OBCS. When the sporadic task fetches
a request, it decodes the original request and calls the appropriate operation with the correct parameters (see
again line 13 in listing 6).

The code for the request descriptor and the implementation of the queueing policy in the OBCS are included
in listings 7 and 8.

2.5 Completing the task structure
To conclude the description of the task structure, we need to complete the definition of the OBCS, and we need
to encapsulate the OBCS, Thread and OPCS in a structure that exposes to the clients only the provided interface.

Figure 5: Functional view of the OPCS

Suppose that we want to create a sporadic task for the OPCS of figure, which exposes operation Op1 (nom-
inal) and Op2 (modifier), as specified in Listings 1 and 2.

The complete task structure (called Op1 Op2 Sporadic Consumer) is shown in Listing 9. It comprises a
generic package that exposes to clients exclusively two subprograms with the same signature of Op1 and Op2.
Several instances (with different values for the ceiling of the protected object at the OBCS, priority and MIAT)
of the same task can then be instantiated.

The private part of the specification contains the OBCS, the declaration of the request descriptors to store
and reify inbound requests for execution of Op1 and Op2 and the queues for the descriptors at the OBCS.

In the body, we redefine operation My OPCS for the request descriptor of Op1 and Op2, so that a call to
My OPCS (in the body of the sporadic Thread, see listing 6) dispatches to the desired OPCS operation.

We instantiate a sporadic Thread for the task (lines 94-95 of listing 10) and set the forwarding to the OBCS
of incoming calls to Op1 and Op2 (lines 97-102 of listing 10).

2.6 Catering for property preservation
The above archetypes can, and in fact should, be extended to cater for property preservation.

As we discussed in previous work [12, 9], we want to achieve the following goals:
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1. enforcement of the timing properties that are to stay constant during execution;

2. monitoring of the timing properties that are inherently variable in so far as they are influenced or deter-
mined by system execution;

3. trapping and handling of the violations of asserted properties.

Goals (2) and (3) can be achieved by use of a simple yet efficient mechanism to monitor the execution time
of tasks, to detect WCET overruns and to react in a timely fashion to a violation event: execution-time timers,
provided by Ada 2005. We refer the reader to [12, 9] where we elaborated specifically on this topic.

3 Discussion
The code archetypes described in the previous sections were used during the ASSERT project, where one
industrial partner used them in the (model-based) re-engineering of one reference satellite subsystem of theirs.

The clean separation between the functional/sequential code and the code that manages concurrency and
real-time aspects is evident from the task structure: the sequential code is segregated in the OPCS.

The use of Ada generics comes handy to create a reusable archetype structure that is used to instantiate sev-
eral tasks that are parametric on the operations at the OPCS and real-time parameters (period, MIAT, priority).

Generics are very useful to reduce the size of the source code for the software system and to promote reuse
of the same concurrent framework for the construction of real-time systems.

We are also quite satisfied as the current use of generics provides us a flexible mechanism to allow the
Thread of the task structure (whose archetype stays fixed) to call operations (at the OPCS) with arbitrarily
different signatures.

Unfortunately however the use of generics in our context has important drawbacks too.
First and foremost, they make it harder to perform timing analysis [13]. In fact, the Ada generic model

permits to use a shared version of the generic body code and at least two Ada compilers take stock of this
possibility (GNAT by AdaCore, and – to the best of our knowledge – Janus/Ada by RR Software), and do so
with good reasons.

Unfortunately however, when generic instantiations share object code, then for the purposes of timing anal-
ysis, each instantiation represents a distinct context of execution. In fact, the analysis needs to discriminate the
impact of the different parameters passed for the instantiation of the generic. Consequently, the type of each
parameter influences the worst-case execution of the code, to the extent that the WCET may have considerable
fluctuations for the range of allowed parameters.

Further, subtler impacts are incurred when the instantiation parameters influence the WCET of loops that
are added at the level of object code and that do not have a counterpart at source level; for example, loops added
for operations to manipulate arrays. This kind of data-dependent influence is hard to deal with.

The direct consequence is that the state space for the analysis greatly increases, adding inordinate complexity
to the problem. In order to mitigate the problem, the designer is normally required to add potentially numerous
annotations to guide the analysis, thus increasing even more the burden on the designer who wants to use this
kind of analysis.

For the reasons explained above, and in the intent of adding some important ”feature” improvements (which
we discuss in the following section), we have resolved to develop an upgrade of our archetypes.

From the Ada language perspective, we want to reduce the amount of generics used in the archetypes and
to make use of interfaces in their place. While interfaces were first introduced in Ada 2005 and have therefore
been around for quite some time now, they did not have full and satisfactory support in the cross compiler at our
disposal during our initial development.

Furthermore, we favour this transition because our primary objective is the creation of code archetypes that
are used by code generation engines from a model-based design environment. While the use of generics might
be a decisive advantage in code-centric approaches (thanks to the reduction of source code to be manually
written), that benefit is less important in our context.
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4 Directions and future work
After some technical discussion with some reference industrial users, we singled out a number of important
improvements that our revised archetypes incorporate. The goal of those improvements is to lift some of the
current limitations and introduce new capabilities.

The areas we are investigating are:

1. to allow the change of the period or MIAT of a task;

2. to support a more flexible allocation of operations to tasks;

3. to support configurable release protocols at the OBCS;

4. to support the management of the task ”context”;

5. to support software updates at run time;

6. to support different operational modes.

In the following we elaborate on each of them in isolation.

4.1 Allocation of multiple operations to tasks
In our original archetypes we typically allocate the execution of a single operation to a single executor Thread.
However, a common need in resource-constrained systems is to contain the proliferation of threads, so as to
reduce complexity and memory footprint (primarily, but not exclusively, off task stacks).

The ”modifier” archetype was a tentative (and admittedly partial) solution to this need, especially for spo-
radic tasks. The queueing policy at the OBCS, which determines how execution requests issued from outside
clients are to be served by the executor Thread, was however arbitrarily chosen, without the user being able
to specify it, and inflexible. The provision for ”configurable release protocols” (see next paragraph) would
complete the archetype, under the condition that it is possible to enforce the MIAT of each sporadic operations.

We would like to complement that provision with the support in our archetypes for the execution of multiple
periodic operations by the same task executor, under the condition of retaining their periodic nature. That could
be achieved – under the condition that all the grouped operations have the same period or all their periods are
harmonic – by introducing appropriate offsets in the release of each single operation.

4.2 Configurable release protocols at the OBCS
User-defined release protocols would offer the user some flexibility in specifying a complex release conditions,
in addition to the classical periodic, sporadic and bursty4 release patterns. We are contemplating to define a
small closed language, similar to a state-machine specification, by which the designer can specify (at the level
of the architectural description of the software system) the desired release protocol.

The Ravenscar-compliant realization of the release protocol at the OBCS (e.g., maintaining a simple boolean
condition for the guard of an entry) would control the release of jobs for that specific task of interest.

Figure 6: Example of state machine for the release of a new task’s job

In the example of fig. 6, a new job for the task is released after the arrival of event Ev1 and Ev2 (after the
arrival of one instance of one of the two event, the protocol ignores other notifications of the same type).

4Where we allow a maximum number of job releases within a bounded interval of time.
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4.3 Management of the task ”context”
In the current structure of code archetypes there is no explicit support for the management of the task ”context”,
i.e., its internal user-level state, as determined by the collection of the values of its typed members, and the
bindings with other tasks of its required interfaces.

We ought to introduce facilities for the storage, retrieval and restoration of the task ”context”. This facility is
especially important for long-lived and multi-moded software systems, in which one and the same task structure
may be used to carry out a range of activities over the lifetime of the system.

Figure 7: a) A request from a supervisor authority commands the load of a new ”context” for the task. b) The
new ”context” contains modified values for internal members and the binding to other tasks

In fig. 7 for example, a supervisory authority requests a task to substitute the values of some of its internal
members and its required interface binding. Of course, the use of this facility requires coordination in order
that the ”context” update (and similarly, the context ”storage”) be performed when it is safe for the system to
execute it.

4.4 Software updates at run time
Support for software updates at run time shall mainly aim at replacing the algorithmic sequential code executed
by a Thread. Our strive for separation of concerns facilitates the job, as that portion of the code is cleanly
isolated in the OPCS.

Therefore, the replacement of the functional code executed by a Thread is just a matter of finding the most
suitable design (with the appropriate language construct) to change the link between the Thread and the OPCS
on an as-needed basis, which we currently cannot due to the specific structure of the generic archetype.

Before performing the software update, the task would be prevented from executing by enqueueing it at the
OBCS with a blocked guard (see the paragraph on ”Operational modes”) and then updating the link. Addition-
ally, when the Thread is enqueued, we could also directly update the memory region where the functional code
resides (assuming of course that we have suitable linker support for it).

4.5 Operational modes and mode change
Finally, as the last item of our extension list, the archetypes shall provide support for multiple operational modes
[14]. What would be required is the definition of a framework able to coordinate the mode changes required by
single tasks.

The possible actions of interest when changing operational mode are to: (i) change the period or the MIAT
of a task of interest; (ii) stop the execution of a task in the new operational mode; (iii) start the execution (of a
previously stopped task); (iv) terminate the execution of a task; (v) change the priority of a task.

Item (i) is already in our todo list. Item (ii) can be easily integrated in the archetypes, and achieved by
closing the guard of the entry of the task at the OBCS, so that at the end of the execution of the last released job
the task is prevented from servicing further requests. For example in listing 10, at line 25, it is easy to modify
the Update Barrier procedure so that the new value for the barrier is set to false whenever and as long as the
task must be prevented from executing. Item (iii) can be achieved in the same manner, i.e., by re-opening the
guard of a task whose thread was permanently enqueued at the entry of its OBCS.
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Item (iv) and (v) instead cannot be realized in Ravenscar-compliant systems, as the RP forbids task termi-
nation and the use of dynamic priorities for tasks due to the high overhead incurred by those features.

In any case, item (iv) is not fundamental to our partners, as the only need to abruptly terminate the execution
of a task would be after a severe software/system failure, an occurrence that is small in probability due to the
extensive verification and validation activities performed on the class of systems of our interest, and that most
probably would require more drastic remedies (switch to redundant systems or reboot of the computer).

Item (v) would be quite interesting to experiment with fine-grained policies to remedy to timing faults [12];
unfortunately, by adhering to the Ravenscar profile, we have to accept that our mode management framework
will be forcedly less expressive than other approaches which leverage on full-fledged Ada (e.g., [15]).

5 Related work
The most known Ada framework for the development of real-time software is by Wellings and Burns [16].

The framework is based on a hierarchy of ”tasks states” (realized as tagged types) which are used to specify
the information relative to the release pattern of a task (periodic, sporadic and aperiodic). The ”task state” is
then coupled with a concrete release mechanism and possibly with mechanisms for the detection and reaction
to WCET overruns and deadline misses. The different release mechanisms are specified in a hierarchy of
synchronized interfaces, and then realized with support of protected objects with entries, timing events and
execution-time timers. The framework also offer support for the execution of aperiodic tasks under a server.

The main differences between that framework and ours are the following:

• The framework of Wellings and Burns supports parameter-less sporadic tasks only;

• Their framework is not – and does not intend to be – Ravenscar-compliant (which instead was a goal
in ours since its outset), as it uses language constructs that are forbidden by the profile (not considering
execution-time timers and group budgets, it nevertheless leverages on protected objects with multiple
entries, requeues and ”select then abort”) and supports task termination;

• Their framework is expression of a task-centric notion typical in real-time systems development, and
the sequential code to be executed by the task is embedded in the task structure itself: the user must
implement the desired task operation to fully realize the task’s tagged type provided by the framework.
Our archetypes instead are designed after methodologies (e.g. component-oriented approaches) where
the functional (i.e. sequential) code to execute is separately specified (typically in a ”component” and
possibly by a software supplier) and tasking is a later concern under the responsibility of the software
integrator: tasks are just executors of code allocated on them (at software deployment time) and not the
basic design entities. This difference is well represented in our separation between the Thread and the
OPCS.

6 Conclusions
In this paper we illustrated the structure of a set of Ravenscar-compliant code archetypes suited for the con-
struction of real-time systems.

The archetypes fully support our strive for separation of concerns, for which we want as much as possible
separation between the functional/sequential part of the software and the code that deals with concurrency and
real-time aspects. Therefore, they complement the Ravenscar Profile in the definition of the programming model
that we use in our development process.

We discussed the advantages, the limitations and the drawbacks of those archetypes, which curiously are all
centred around our use of Ada generics.

The archetypes were created during the ASSERT project. In a follow-up project CHESS, we are investigat-
ing how to evolve these archetypes, to lift their limitations and introduce a number of important advancements
as a response to the requests of our reference industrial partners.
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Appendix: Code excerpts

Listing 1: Application of the Inversion of Control pattern in the specification of an OPCS.

1 −− i n producer . ads
2 package Producer is
3
4 type Producer FC is new Con t ro l l ed with pr ivate ;
5 type Producer FC Ref is access a l l Producer FC ’ Class ;
6 type Producer FC Stat ic Ref is access a l l Producer FC ;
7 −− [ code omi t ted ]
8
9 −− Cal led on i n i t i a l i z a t i o n o f the OPCS

10 procedure Set x ( This : in out Producer FC ; c : in Consumer . Consumer FC Ref ) ;
11
12 −− Operat ion o f the OPCS
13 procedure Produce ( This : in out Producer FC ) ;
14
15 private
16
17 type Producer FC is new Con t ro l l ed with record
18 x : Consumer . Consumer FC Ref ;
19 end record ;
20
21 end Producer ;

Listing 2: Application of the Inversion of Control pattern in the body of an OPCS.

1 −− i n producer . adb
2 package body Producer is
3
4 −− [ code omi t ted ]
5
6 procedure Set x ( This : in out Producer FC ; c : in Consumer . Consumer FC Ref ) is
7 begin
8 This . x := c ;
9 end Set x ;

10
11 procedure Produce ( This : in out Producer FC ) is
12 begin
13 −− do use fu l s t u f f
14 This . x . Consume ( [ Parameters ] ) ; −− The ac tua l c a l l i s performed on the
15 −− ” connector ” passed upon i n i t i a l i z a t i o n
16 −− of the OPCS
17 end Produce ;
18
19 end Producer ;
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Listing 3: Archetype for the cyclic Thread (specification)

1 with System ; use System ;
2 with Ada . Real Time ; use Ada . Real Time ;
3
4 generic
5 with procedure Cyc l i c Opera t ion ;
6 package Cyc l ic Task is
7
8 task type Thread T
9 ( T h r e a d P r i o r i t y : P r i o r i t y ;

10 Period : P o s i t i v e ) is
11 pragma P r i o r i t y ( T h r e a d P r i o r i t y ) ;
12 end Thread T ;
13 end Cyc l ic Task ;

Listing 4: Archetype for the cyclic Thread (body)

1 with Ada . Real Time ;
2 with System Time ;
3
4 package body Cyc l ic Task is
5
6 task body Thread T is
7 use Ada . Real Time ;
8 Next Time : Time := System Time . System Start Time ;
9 begin

10 loop
11 delay u n t i l Next Time ;
12 Cyc l i c Opera t ion ;
13 Next Time := Next Time + Mi l l i seconds ( Per iod ) ;
14 end loop ;
15 end Thread T ;
16 end Cyc l ic Task ;
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Listing 5: Sporadic Thread (spec).

1 with System Types ; use System Types ;
2 with System ; use System ;
3 with Ada . Real Time ; use Ada . Real Time ;
4
5 generic
6 with procedure Get Request (Req : out Request Descr ip tor T ;
7 Release : out Time ) ;
8 package Sporadic Task is
9

10 task type Thread T ( T h r e a d P r i o r i t y : A n y P r i o r i t y ;
11 MIAT : In tege r ) is
12 pragma P r i o r i t y ( T h r e a d P r i o r i t y ) ;
13 end Thread T ;
14 end Sporadic Task ;

Listing 6: Sporadic Thread (body).

1 with System Time ; use System Time ;
2 package body Sporadic Task is
3
4 task body Thread T is
5 Req Desc : Request Descr ip tor T ;
6 Release : Time ;
7 Next Time : Time := System Start Time ;
8 begin
9 loop

10 delay u n t i l Next Time ;
11 Get Request ( Req Desc , Release ) ;
12 Next Time := Release + Mi l l i seconds (MIAT ) ;
13 case Req Desc . Request is
14 when NO REQ => nul l ;
15 when START REQ | ATC REQ =>
16 My OPCS ( Req Desc . Params . a l l ) ;
17 when others => nul l ;
18 end case ;
19 end loop ;
20 end Thread T ;
21 end Sporadic Task ;
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Listing 7: System types (spec).

1 with System ;
2 with Ada . Real Time ; use Ada . Real Time ;
3 with System Time ;
4 with Ada . F i n a l i z a t i o n ; use Ada . F i n a l i z a t i o n ;
5
6 package System Types is
7
8 −− Abst rac t Parameter type −−
9 type Param Type is abstract tagged record

10 In Use : Boolean := False ;
11 end record ;
12 −− Abst rac t f u n c t i o n a l procedure −−
13 procedure My OPCS ( Se l f : in out Param Type ) is abstract ;
14
15 type Param Type Ref is access a l l Param Type ’ Class ;
16 type Param Arr is array ( I n tege r range <>) of Param Type Ref ;
17 type Param Arr Ref is access a l l Param Arr ;
18 −− Request type −−
19 type Request T is (NO REQ, START REQ, ATC REQ ) ;
20
21 −− Request d e s c r i p t o r to r e i f y an execut ion request
22 type Request Descr ip tor T is
23 record
24 Request : Request T ;
25 Params : Param Type Ref ;
26 end record ;
27
28 type Param Buffer T ( Size : I n tege r ) is
29 record
30 Buf fe r : aliased Param Arr ( 1 . . Size ) ;
31 Index : I n tege r := 1 ;
32 end record ;
33
34 type Param Buffer Ref is access a l l Param Buffer T ;
35 procedure Increase Index ( Se l f : in out Param Buffer T ) ;
36
37 −− Abst rac t OBCS −−
38 type OBCS T is abstract new Con t ro l l ed with nul l record ;
39 type OBCS T Ref is access a l l OBCS T ’ Class ;
40
41 procedure Put ( Se l f : in out OBCS T; Req : Request T ; P : Param Type Ref )
42 is abstract ;
43
44 procedure Get ( Se l f : in out OBCS T; R : out Request Descr ip tor T )
45 is abstract ;
46
47 −− Sporadic OBCS −−
48 type Sporadic OBCS ( Size : I n tege r ) is new OBCS T with
49 record
50 START Param Buffer : Param Arr ( 1 . . Size ) ;
51 START Insert Index : I n tege r ;
52 START Extract Index : I n tege r ;
53 START Pending : I n tege r ;
54 ATC Param Buffer : Param Arr ( 1 . . Size ) ;
55 ATC Inser t Index : I n tege r ;
56 ATC Extract Index : I n tege r ;
57 ATC Pending : I n tege r ;
58 Pending : I n tege r ;
59 end record ;
60
61 overriding
62 procedure I n i t i a l i z e ( Se l f : in out Sporadic OBCS ) ;
63
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64 overriding
65 procedure Put ( Se l f : in out Sporadic OBCS ; Req : Request T ; P : Param Type Ref ) ;
66
67 overriding
68 procedure Get ( Se l f : in out Sporadic OBCS ; R : out Request Descr ip tor T ) ;
69
70 −− Parameter b u f f e r
71 type Param Buffer T ( Size : I n tege r ) is
72 record
73 Buf fe r : aliased Param Arr ( 1 . . Size ) ;
74 Index : I n tege r := 1 ;
75 end record ;
76
77 type Param Buffer Ref is access a l l Param Buffer T ;
78
79 procedure Increase Index ( Se l f : in out Param Buffer T ) ;
80
81 end System Types ;

Listing 8: System types (body).

1 package body System Types is
2
3 −− Sporadic OBCS −−
4 procedure I n i t i a l i z e ( Se l f : in out Sporadic OBCS ) is
5 begin
6 Se l f . START Pending := 0 ;
7 Se l f . START Insert Index := Se l f . START Param Buffer ’ F i r s t ;
8 Se l f . START Extract Index := Se l f . START Param Buffer ’ F i r s t ;
9 Se l f . ATC Pending := 0 ;

10 Se l f . ATC Inser t Index := Se l f . ATC Param Buffer ’ F i r s t ;
11 Se l f . ATC Extract Index := Se l f . ATC Param Buffer ’ F i r s t ;
12 end I n i t i a l i z e ;
13
14 procedure Put ( Se l f : in out Sporadic OBCS ; Req : Request T ; P : Param Type Ref ) is
15 begin
16 case Req is
17 when START REQ =>
18 Se l f . START Param Buffer ( Se l f . START Insert Index ) := P ;
19 Se l f . START Insert Index := Se l f . START Insert Index + 1;
20 i f Se l f . START Insert Index > Se l f . START Param Buffer ’ Last then
21 Se l f . START Insert Index := Se l f . START Param Buffer ’ F i r s t ;
22 end i f ;
23 −−increase the number o f pending requests but do not
24 −−overcome the number o f bu f fe red ones
25 i f Se l f . START Pending < Se l f . START Param Buffer ’ Last then
26 Se l f . START Pending := Se l f . START Pending + 1;
27 end i f ;
28 when ATC REQ =>
29 Se l f . ATC Param Buffer ( Se l f . ATC Inser t Index ) := P ;
30 Se l f . ATC Inser t Index := Se l f . ATC Inser t Index + 1;
31 i f Se l f . ATC Inser t Index > Se l f . ATC Param Buffer ’ Last then
32 Se l f . ATC Inser t Index := Se l f . ATC Param Buffer ’ F i r s t ;
33 end i f ;
34
35 i f Se l f . ATC Pending < Se l f . ATC Param Buffer ’ Last then
36 −−increase the number o f pending requests but do not
37 −−overcome the number o f bu f fe red ones
38 Se l f . ATC Pending := Se l f . ATC Pending + 1;
39 end i f ;
40
41 when others => nul l ;
42 end case ;
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43 Se l f . Pending := Se l f . START Pending + Se l f . ATC Pending ;
44 end Put ;
45
46 procedure Get ( Se l f : in out Sporadic OBCS ; R : out Request Descr ip tor T ) is
47 begin
48 i f Se l f . ATC Pending > 0 then
49 R := (ATC REQ, Se l f . ATC Param Buffer ( Se l f . ATC Extract Index ) ) ;
50 Se l f . ATC Extract Index := Se l f . ATC Extract Index + 1;
51 i f Se l f . ATC Extract Index > Se l f . ATC Param Buffer ’ Last then
52 Se l f . ATC Extract Index := Se l f . ATC Param Buffer ’ F i r s t ;
53 end i f ;
54 Se l f . ATC Pending := Se l f . ATC Pending − 1;
55 else
56 i f Se l f . START Pending > 0 then
57 R := (START REQ, Se l f . START Param Buffer ( Se l f . START Extract Index ) ) ;
58 Se l f . START Extract Index := Se l f . START Extract Index + 1;
59 i f Se l f . START Extract Index > Se l f . START Param Buffer ’ Last then
60 Se l f . START Extract Index := Se l f . START Param Buffer ’ F i r s t ;
61 end i f ;
62 Se l f . START Pending := Se l f . START Pending − 1;
63 end i f ;
64 end i f ;
65 R. Params . In Use := True ;
66 Se l f . Pending := Se l f . START Pending + Se l f . ATC Pending ;
67 end Get ;
68
69 procedure Increase Index ( Se l f : in out Param Buffer T ) is
70 begin
71 Se l f . Index := Se l f . Index + 1;
72 i f Se l f . Index > Se l f . Buf fer ’ Last then
73 Se l f . Index := Se l f . Buf fer ’ F i r s t ;
74 end i f ;
75 end Increase Index ;
76 end System Types ;
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Listing 9: Complete task structure (spec).

1 with System ;
2 with Types ;
3 with System Types ;
4 with Ada . Real Time ;
5 with Consumer ;
6 with Ada . Real Time ; use Ada . Real Time ;
7
8 package Op1 Op2 Sporadic Consumer is
9

10 use System ; use Types ;
11
12 use System Types ;
13
14 −− gener ic c h i l d package to i n s t a n t i a t e a sporad ic task
15 generic
16 T h r e a d P r i o r i t y : P r i o r i t y ;
17 C e i l i n g : P r i o r i t y ;
18 MIAT : In tege r ;
19 −−The OPCS ins tance
20 OPCS Instance : Consumer . Consumer FC Static Ref ;
21 package My Sporadic Factory is
22
23 procedure Op1( a : in T1 ; b : in T2 ) ;
24 procedure Op2( a : in T1 ) ;
25 private
26
27 end My Sporadic Factory ;
28
29 private
30
31 Param Queue Size : constant I n t ege r := 3 ;
32 OBCS Queue Size : constant I n t ege r := Param Queue Size ∗ 2;
33
34 −−create data s t r u c t u r e s to r e i f y i nvoca t i ons to Op1
35 type Op1 Param T is new Param Type with record
36 OPCS Instance : Consumer . Consumer FC Static Ref ;
37 a : T1 ;
38 b : T2 ;
39 end record ;
40 type Op1 Param T Ref is access a l l Op1 Param T ;
41
42 type Op1 Param Arr is array ( I n tege r range <>) of aliased Op1 Param T ;
43
44 overriding
45 procedure My OPCS( Se l f : in out Op1 Param T ) ;
46
47 −−create data s t r u c t u r e s to r e i f y i nvoca t i ons to Op2
48 type Op2 Param T is new Param Type with record
49 OPCS Instance : Consumer . Consumer FC Static Ref ;
50 a : T1 ;
51 end record ;
52 type Op2 Param T Ref is access a l l Op2 Param T ;
53
54 type Op2 Param Arr is array ( I n tege r range <>) of aliased Op2 Param T ;
55
56 overriding
57 procedure My OPCS( Se l f : in out Op2 Param T ) ;
58
59 −− create an OBCS t h a t match the i n t e r f a c e of the OPCS (FC)
60 protected type OBCS( C e i l i n g : P r i o r i t y ;
61 Op1 Params Arr Ref P : Param Arr Ref ;
62 Op2 Params Arr Ref P : Param Arr Ref ) is
63 pragma P r i o r i t y ( C e i l i n g ) ;

Ada Letters, April 2013 81 Volume XXXIII, Number 1



64 entry Get Request (Req : out Request Descr ip tor T ; Release : out Time ) ;
65 procedure Op2( a : in T1 ) ;
66 procedure Op1( a : in T1 ; b : in T2 ) ;
67 private
68 −− The queue system f o r the OBCS
69 OBCS Queue : Sporadic OBCS ( OBCS Queue Size ) ;
70 −− Arrays to s to re a set o f r e i f i e d invoca t i ons f o r Op1 and Op2
71 Op1 Params : Param Buffer T ( Param Queue Size ) :=
72 ( Size => Param Queue Size , Index => 1 , Bu f fe r => Op1 Params Arr Ref P . a l l ) ;
73 Op2 Params : Param Buffer T ( Param Queue Size ) :=
74 ( Size => Param Queue Size , Index => 1 , Bu f fe r => Op2 Params Arr Ref P . a l l ) ;
75 Pending : Standard . Boolean := False ;
76 end OBCS;
77 end Op1 Op2 Sporadic Consumer ;

Listing 10: Complete task structure (body).

1 with Ada . Real Time ; use Ada . Real Time ;
2 with Sporadic Task ;
3 with Types ; use Types ;
4
5 package body Op1 Op2 Sporadic Consumer is
6
7 use System Types ;
8 −− R e d e f i n i t i o n o f My OPCS. Ca l l Consumer FC .Op1 and set In Use to f a l s e .
9 procedure My OPCS( Se l f : in out Op1 Param T ) is

10 begin
11 Se l f . OPCS Instance .Op1( Se l f . a , Se l f . b ) ;
12 Se l f . In Use := False ;
13 end My OPCS;
14
15 −− R e d e f i n i t i o n o f My OPCS. Ca l l Consumer FC .Op2 and set In Use to f a l s e .
16 procedure My OPCS( Se l f : in out Op2 Param T ) is
17 begin
18 Se l f . OPCS Instance .Op2( Se l f . a ) ;
19 Se l f . In Use := False ;
20 end My OPCS;
21
22 protected body OBCS is
23 procedure Update Bar r ie r is
24 begin
25 Pending := (OBCS Queue . Pending ) > 0;
26 end Update Bar r ie r ;
27 −− Get Request s to res the t ime of the re lease of the task ,
28 −− gets the next request ( according to the OBCS queuing p o l i c y ) ,
29 −− and updates the guard .
30 entry Get Request (Req : out Request Descr ip tor T ; Release : out Time )
31 when Pending is
32 begin
33 Release := Clock ;
34 Get (OBCS Queue , Req ) ;
35 Update Bar r ie r ;
36 end Get Request ;
37
38 −− When a c l i e n t c a l l s Op1, the request i s r e i f i e d and put i n the OBCS queue .
39 procedure Op1( a : in T1 ; b : in T2 ) is
40 begin
41 i f Op1 Params . Bu f fe r ( Op1 Params . Index ) . In Use then
42 Increase Index ( Op1 Params ) ;
43 end i f ;
44
45 Op1 Param T Ref ( Op1 Params . Bu f fe r ( Op1 Params . Index ) ) . a := a ;
46 Op1 Param T Ref ( Op1 Params . Bu f fe r ( Op1 Params . Index ) ) . b := b ;
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47 Put (OBCS Queue , START REQ, Op1 Params . Bu f fe r ( Op1 Params . Index ) ) ;
48 Increase Index ( Op1 Params ) ;
49 Update Bar r ie r ;
50 end Op1 ;
51
52 −− When a c l i e n t c a l l s Op2, the request i s r e i f i e d and put i n the OBCS queue .
53 procedure Op2( a : in T1 ) is
54 begin
55 i f Op2 Params . Bu f fe r ( Op2 Params . Index ) . In Use then
56 Increase Index ( Op2 Params ) ;
57 end i f ;
58
59 Op2 Param T Ref ( Op2 Params . Bu f fe r ( Op2 Params . Index ) ) . a := a ;
60 Put (OBCS Queue , ATC REQ, Op2 Params . Bu f fe r ( Op2 Params . Index ) ) ;
61 Increase Index ( Op2 Params ) ;
62 Update Bar r ie r ;
63 end Op2 ;
64 end OBCS;
65
66 package body My Sporadic Factory is
67
68 Op1 Par Arr : Op1 Param Arr ( 1 . . Param Queue Size ) := ( others =>
69 ( fa l se ,
70 OPCS Instance ,
71 T1 Defaul t Value ,
72 T2 Defau l t Va lue ) ) ;
73
74 Op1 Ref Par Arr : aliased Param Arr := ( Op1 Par Arr ( 1 ) ’ access ,
75 Op1 Par Arr ( 2 ) ’ access , Op1 Par Arr ( 3 ) ’ access ) ;
76
77 Op2 Par Arr : Op2 Param Arr ( 1 . . Param Queue Size ) := ( others =>
78 ( fa l se ,
79 OPCS Instance ,
80 T1 Defau l t Va lue ) ) ;
81
82 Op2 Ref Par Arr : aliased Param Arr := ( Op2 Par Arr ( 1 ) ’ access ,
83 Op2 Par Arr ( 2 ) ’ access , Op2 Par Arr ( 3 ) ’ access ) ;
84
85 −− Creat ion o f the OBCS
86 Pro toco l : aliased OBCS( Ce i l i ng , Op1 Ref Par Arr ’ access ,
87 Op2 Ref Par Arr ’ access ) ;
88 −− I n d i r e c t i o n to Get Request o f the OBCS
89 procedure Get ter (Req : out Request Descr ip tor T ; Release : out Time ) is
90 begin
91 Pro toco l . Get Request (Req , Release ) ;
92 end Get ter ;
93
94 −− I n s t a n t i a t e the gener ic package using the procedure above
95 package My Sporadic Task is new Sporadic Task ( Get ter ) ;
96
97 Thread : My Sporadic Task . Thread T ( Th read Pr i o r i t y , MIAT ) ;
98 −− When a c l i e n t c a l l s Op1, r e d i r e c t the c a l l to the OBCS
99 procedure Op1( a : in T1 ; b : in T2 ) is

100 begin
101 Pro toco l .Op1( a , b ) ;
102 end Op1 ;
103
104 −− When a c l i e n t c a l l s Op2, r e d i r e c t the c a l l to the OBCS
105 procedure Op2( a : in T1 ) is
106 begin
107 Pro toco l .Op2( a ) ;
108 end Op2 ;
109 end My Sporadic Factory ;
110 end Op1 Op2 Sporadic Consumer ;
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Abstract

Classical lock-based concurrency control does not scale with current and foreseen multi-core architectures, open-
ing space for alternative concurrency control mechanisms. The concept of transactions executing concurrently in
isolation with an underlying mechanism maintaining a consistent system state was already explored in fault-tolerant
and distributed systems, and is currently being explored by transactional memory, this time being used to manage
concurrent memory access. In this paper we discuss the use of Software Transactional Memory (STM), and how
Ada can provide support for it. Furthermore, we draft a general programming interface to transactional memory,
supporting future implementations of STM oriented to real-time systems.

1 Introduction
Current architectures based on multiple processor cores in a single chip are becoming widespread, and are challenging
our ability to develop concurrent and parallel software. The tendency to integrate even larger number of cores will
further impact the way systems are developed, as software performance can no longer rely on faster processors but
instead on efficient techniques to design and execute parallel software. It is also important to note that developing
scalable and safe concurrent code for such architectures requires synchronisation control mechanisms that are able to
cope with an increasing number of parallel tasks, providing the necessary building blocks for modular, concurrent, and
composable software.

In uniprocessor systems, lock-based synchronisation became the de facto solution to avoid race conditions, despite
the well-known pitfalls, such as complexity, lack of composability [1] or (bounded) priority inversion. In multiproces-
sor systems, lock-based synchronisation becomes more problematic. Coarse-grained locks serialise non-conflicting
operations (which could actually progress in parallel) on disjoint parts of a shared resource, and may cause cascading
or convoying blocks [2], wasting the parallel execution opportunities provided by such architectures. Fine-grained
locks increase the complexity of system design, affecting composability seriously, and produce an increasing burden
for the programmer. In multiprocessors, non-blocking approaches present strong conceptual advantages [3] and have
been shown in several cases to perform better than lock-based ones [4].

Transactional memory is a concept that has been researched in parallel systems for nearly two decades. Although
the first proposal of transactional memory was hardware-based [5], it was soon followed by a software-based adapta-
tion [6]. Software Transactional Memory has the advantage of being easily reconfigurable and to enable transactional
support on architectures that do not have native support for atomic operations. Currently, STM research is well ahead
comparatively with hardware-support for transactions.

Under the transactional memory paradigm, critical sections are executed optimistically in parallel while an un-
derlying mechanism maintains the consistency of shared data. Data is kept consistent by serialising critical sections,
that is, the outcome is as if critical sections were executed atomically, in sequence. Concurrent critical sections may
attempt to perform conflicting data accesses; such conflicts are usually solved by selecting the critical section that
will conclude, and aborting or delaying the contenders. Due to this similarity with database transactions, in which an
atomic sequence of operations can either commit or abort, critical sections are called transactions.
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Transactional Memory promises to ease concurrent programming: the programmer must indicate which code be-
longs to a transaction and leaves the burden of synchronisation details on the underlying STM mechanism to conserve
the consistency of shared transactional data. This approach has proved to scale well with multiprocessors [7], delivers
higher throughput than coarse-grained locks and does not increase design complexity as fine-grained locks do [8].

The advantages of STM are counterbalanced with increased times in memory accesses, memory utilisation over-
head and speculative execution of code. The latter is, in fact, a challenge that has to be addressed if STM is to be
applied to real-time systems, because it is not admissible that one transaction can be unboundedly aborted and forced
to repeat. Some work on the field of STM on multiprocessor real-time systems was already published [9, 10, 11, 12].

Several implementations of STM were implemented for programming languages such as java, C++, C# and
Haskell, but currently there is no implementation for Ada. It is thus in this context that this paper revisits previ-
ous work on transactions support in Ada, for fault-tolerant systems, and proposes a programming interface to support
Software Transactional Memory. A goal is for this interface to be independent of an eventual STM implementation,
so programs can, for instance, change the contention mechanism (the algorithm that manages conflicting operations),
according to application specific characteristics.

The paper is structured as follows. Section 2 revisits previous work on transaction support in Ada for fault-tolerant
and distributed systems. Afterwards, an introduction to the STM essential issues is given in Section 3. In Section 4,
we propose a general programming interface to access STM functionality. This paper terminates with conclusions and
perspectives for further work in Section 5.

2 Previous work on transactions in Ada
Transaction support in Ada has been a subject of research in the field of fault-tolerant systems. The concept of
a transaction grouping a set of operations that appear to be executed atomically (with respect to other concurrent
transactions) if it had success, or having no effect whatsoever on the state of the system if aborted, is quite appealing
as a concurrent control mechanism for fault-tolerant and/or distributed systems. The ability to abort a transaction due to
data access contention or to an unexpected error and, consequently, rolling back any state modifications, automatically
preserves the system in a safe and consistent state. Safe consistent states can be stored in a durable medium, so they
might be available even after a crash.

The loose parallelism provided by the isolation property of the transactional paradigm is appealing for systems
based on multiple processors (either clustered or distributed) and the inherent backward recoverability mechanisms
suit fault-tolerant concerns.

Two paradigmatic implementations of transaction support in Ada are the Transactional Drago [13, 14] and the
OPTIMA framework [15].

Both proposals share many common attributes, aiming to support competitive concurrency (between transactions)
and cooperative concurrency (inside a transaction). The two provide the essential interface to start, commit and abort
transactions. Transactions can be multithreaded, i.e. multiple tasks can work on behalf of a single transaction. Both
implementations support nested transactions and exception handling.

Despite the similarities, both implementations take different approaches.
Transactional Drago is an extension to the Ada language, so it can only be used with compilers that include this

extension. Transactions are defined using the transactional block, an extension that resembles an Ada block statement,
but identified with the keyword transaction [14]. The transactional block creates a new scope in which data, tasks
and nested transactions can be defined. Data declared inside a transactional block is volatile and subject to concurrency
control. Tasks inside a transactional block work cooperatively on behalf of the transaction and their results will dictate
the outcome of the transaction.

The transactional block provides a clean syntax, defining clearly the limits of the transaction, without the need for
an explicit abort statement. Aborts are triggered by the raising of unhandled exceptions from within the transactional
block. The following code sample illustrates a transactional block.

transaction
declare

-- data declared here is subject to concurrency control
begin
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-- sequence of statements
-- can include tasks that work on behalf of transaction
-- can include nested transactions

exception
-- handle possible exceptions here...

end transaction;

The OPTIMA framework is provided as a library, which does not modify the language. In this framework, a trans-
action is created with the command Begin Transacion and, depending on the result of the computation, ends with
either Commit Transaction or Abort Transaction. The OPTIMA framework supports open multithreaded
transactions, so the additional command Join Transaction allows one task to join and cooperate on an ongoing
transaction. When a task calls Begin Transacion or Join Transaction, it becomes linked to the transaction
via the Ada.Task Attributes standard library unit. From that moment on, the transaction support is able to
determine the transaction context for the task. The following code sample illustrates a task that starts a transaction.

begin
Begin_Transaction;
-- perform work
Commit_Transaction;

exception
when ...

-- handle recoverable exceptions here...
Commit_Transaction;

when others =>
Abort_Transaction;
raise;

end;

This example shows how the use of the exceptions mechanism in this framework permits to define handlers for
foreseen exceptional cases, thus allowing forward recovery in such cases. However, unexpected exceptions will abort
the transaction, like in Transactional Drago.

3 Lightweight memory transactions
STM shares the basic principles of transactions from databases and fault-tolerant systems: transactions can execute
speculatively in parallel, but their effects should appear as if they executed atomically in sequence. However, the field
of application has particular characteristics. Transactions are expected to be the size of typical critical sections, i.e. as
short as possible. In the STM perspective, the transaction must conclude its work, so even if it aborts, the transaction
should try again the necessary number of times until it is allowed to commit.

The STM mechanism keeps track of accesses to transactional objects that are exclusively memory locations (words
or structures). Since memory accesses to transactional objects become indirect accesses, the STM mechanism must
be light enough to avoid performance issues.

Unlike the previous work oriented to fault-tolerant systems, STM does not intend to store consistent states in a
persistent medium, but simply to keep data in memory consistent. Furthermore, the multithreaded transaction concept
does not apply: a transaction belongs exclusively to a task, i.e. it is part of the sequential code of the task.

In comparison with database transactions and fault-tolerant transactions, transactional memory transactions can be
considered lightweight memory transactions [16].

Transactions can be divided in two classes, according to the transactional memory access pattern:

• read-only transactions, in which the transaction does not try to modify any transactional object, and

• update transactions, in which the transaction tries to modify at least one transactional object.

A conflict may occur when two or more transactions concurrently access one object and at least one of the accesses
tries to modify the object: if the updating transaction commits before the contenders, the contenders will be working
with outdated data and should abort.
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Conflicts are typically solved by selecting one transaction that will commit and aborting the contenders. The
performance of a STM is therefore dependent on the frequency of contention, which has direct effect on the transaction
abort ratio. Thus, STM behaves very well in systems exhibiting a predominance of read-only transactions, short-
running transactions and a low ratio of context switching during the execution of a transaction [17].

STM implementations may differ in multiple ways, namely [18]:

• version management – how tentative writes are performed;

• conflict detection – when conflicts are detected;

• granularity of conflicts – word, cache-line or object granularity.

Eager version management allows the object to be immediately modified, but requires that the object is unavailable
to concurrent transactions until the updating transaction commits. If the updating transaction aborts, the value of the
object is rolled-back to the previous version. Lazy version management defers the update of the object until the
transaction commits, leaving the object available to other concurrent transactions. This implies that a transaction must
work with an image of the object that will eventually replace the value of the transactional object.

Conflicts can be detected immediately, under eager conflict detection, or deferred until one transaction tries to
commit under lazy conflict detection. Eager conflict detection inhibits a transaction to continue once it faces a conflict
that will not win. Lazy conflict detection permits transactions to execute in total isolation and only when a transaction
tries to commit, conflicts are detected and solved. Eager conflict detection better serves write-write conflicts, since
one of the transactions will inevitably abort, but lazy conflict detection can be more efficient with read-write conflicts,
as long as read-only transactions commit before update transactions [19].

The granularity of conflict detection determines the possibility of false conflict detection. Finer granularity means
less false conflicts detected and lower transaction abort ratio, but at the expense of higher memory overheads.

Regardless which attributes are selected for an actual STM implementation, transactions will eventually be aborted,
and some transactions may present characteristics (e.g. long running, low priority) that can potentially lead to starva-
tion. In parallel systems literature, the main concern about STM is on system throughput, and the contention manage-
ment policy has often the role to prevent livelock (a pair of transactions indefinitely aborting each other) and starvation
(one transaction being constantly aborted by the contenders), so that each transaction will eventually conclude and
the system will progress as a whole. In real-time systems, the guarantee that a transaction will eventually conclude is
not sufficient to ensure the timing requirements that are critical to such type of systems: the maximum time to commit
must be known. The verification of the schedulability of the task set requires that the WCET of each task is known,
which can only be calculated if the maximum time used to commit the included transaction is known. As such, STM
can be used in real-time systems as long as the employed contention management policy provides guarantees on the
maximum number of retries associated with each transaction.

Recently, we have proposed new approaches to manage contention between conflicting transactions, using on-line
information, with the purpose of reducing the overall number of retries, increasing responsiveness and reducing wasted
processor utilization, while assuring deadlines are met [12]. With our proposed policy, conflicting transactions will
commit according to the chronological order of arrival, except if an older contender is currently pre-empted. This
approach is fair in the sense that no transaction will be chronically discriminated due to some innate characteristic.
But most importantly, this approach is predictable, because the time overhead taken by a transaction until commit
depends solely on the ongoing transactions at the moment the transaction arrives, being independent of future arrivals
of other transactions, except for conflicting transactions executing in the same processor that arrive after the job being
pre-empted by another job with higher urgency.

4 Providing STM support in Ada
Essential support to STM can be implemented in a library, without introducing modifications in the Ada program-
ming language, easing the portability of an STM service, without the need to modify compilers and debuggers. The
drawback is that the programmer must adhere to a somewhat less clean syntax.

The following code illustrates how a very simple transaction should be written.
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-- we need a transaction identifier structure
My_Transaction : Transaction;

-- start an update transaction
My_Transaction.Start(Update);

loop
-- read a value from a transactional object
x := trans_object_1.Get(My_Transaction);

-- write a value to a transactional object
trans_object_2.Set(My_Transaction, y);

-- try to commit transaction
exit when My_Transaction.Commit;

exception
-- handle possible exceptions here...

end loop;

This example shows how the initialisation of the transaction and the retry-until-commit loop have to be explicitly
written.

Our STM perspective requires two key classes of objects: the transactional object and the transaction identifier.
The transactional object encapsulates a data structure with the transactional functionality. For instance, a write

operation will not effectively modify the value of the object if the STM applies lazy version management.
The transaction identifier is a structure that stores the data required by the contention manager to apply the conflict

solving policy chosen for the system.

4.1 Transactional object
A transactional object is a type of class that wraps a classical data structure with the transactional functionality.
The interface provided is similar to the non-transactional version, but adds the operations required to maintain the
consistency of the object, according to the implementation details of the STM.

Thus, for every access, the identification of the transaction is required, either to locate the transaction holding
the object (case of eager version management) or track all transactions referring the object (case of lazy version
management). In each case, the object must locate one or all accessing transactions, respectively, so under contention,
transactions attributes are used to determine which transaction is allowed to proceed, according to the contention
management policy.

Reading accesses can also be tailored for read-only transactions, if a multi-version STM is in use. Transparently,
the transactional object can return the latest version to an update transaction, or a consistent previous version to a
read-only transaction.

-- Transactional object
package Transactional_Objects is

type Transactional_Object is tagged private;
-- examples of transactional class methods
procedure Set(T_Object: Transactional_Object;

Transaction_ID : Transaction;
Value : Object_Type);

function Get(T_Object: Transactional_Object;
Transaction_ID : Transaction)

return Object_Type;
private

type Transactional_Object is tagged
record
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Current_Value : Object_Type;
Accesses_Set : List_of_References_to Transaction_Identifiers;
-- some other relevant fields...

end record;
end Transactional_Objects;

4.2 Transaction identifier
The transaction identifier provides the transactional services to a task, uniquely identifying a transaction. The essential
interface of this class should provide the Start, Commit and Abort operations, and keep track of the accessed
objects.

type Transaction_Type is (Read_Only, Update);

-- Transaction identifier
package Transactions is

type Transaction is tagged private;
procedure Start(T : Transaction;

TRX_Type : Transaction_Type);
procedure Abort(T : Transaction);
procedure Terminate(T : Transaction);
function Commit(T : Transaction)

return Boolean;

private
type Transaction is tagged
record

Data_Set : List_of_References_to_Transactional_Objects;
end record;
end Transactions;

The Start procedure initialises the transaction environment. Starting an already active transaction is not allowed,
and an exception should be raised.

The Abort procedure erases any possible effects of the transaction, but the transaction remains active and is
allowed to undertake further execution attempts. Aborting an inactive transaction is not allowed, and an exception
should be raised.

The Terminate procedure cancels the transaction, leaving the transaction inactive. Terminating an inactive
transaction is not allowed, and an exception should be raised.

The last operation provided by this interface is the Commit function that validates accessed data and resolves
possible conflicts. If the transaction is allowed to commit its updates, then this function will return the True value.
Commiting an inactive transaction is not allowed, and an exception should be raised.

This class also stores the references to the transactional objects that were accessed in the context of the transaction.
These data are required when trying to commit, to validate read and modification locations.

Specific STM implementations will, most likely, require modified operation functionality and additional attributes.
For example, some STM algorithms require to know the instant the transaction started, the current status of the trans-
action [12], or the instant the current execution of the transaction began [20, 21, 22].

These attributes can be included in extensions of this class, deriving a new class for each implementation, as the
following example illustrates.

type Transaction_Status is (Active,
Preempted,
Zombie,
Validating,
Committed);
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-- Transaction identifier
package Transactions_Foo_STM is

type Transaction_Foo_STM is new Transaction with private;
overriding
function Commit(T : Transaction_Foo_STM) return Boolean;

private
type Transaction_Foo_STM is new Transaction with
record

-- implementation specific elements
-- some examples below
Type_of_Accesses : Transaction_Type;
Time_Started : STM_Time;
Time_Current_Begin : STM_Time;
Status : Transaction_Status;
-- some other relevant fields...

end record;
end Transactions_Foo_STM;

Our current approach to STM assumes that a transaction is not able to abort ongoing concurrent transactions, as
this could be very costly for the implementation. However, we intend to evaluate this in future work, and if considered
feasible we will also evaluate the usefulness of the Asynchronous Transfer of Control (ATC) feature of the language
to detect the request to abort a transaction and execute the roll-back operations.

5 Conclusions
Current and foreseen multi-core architectures have raised performance issues to classical concurrency control based
on locks: either coarse-grained locking impairs parallelism or fine-grained locking increases the difficulty to safely
develop concurrent software.

Transactions were already considered as a concurrency control mechanism able to maintain the consistency of the
system’s state in which parallel transactions could abort due to data contention or hardware/software errors. Currently,
the same concept is being applied to manage concurrent access to shared data, known as transactional memory.

In this paper, we discuss the use of software transactional memory and we draft a common programming interface
to STM in Ada. This interface is independent of a particular STM implementation, so different implementations can
address different utilization patterns. It is also the goal of this work to allow the research on contention mechanisms
for software transactional memory in real-time systems. Future work will address new contention mechanisms for
these systems and evolve the STM support in Ada (e.g. using generics or Ada 2012 aspects as wrappers, and reflecting
the real-time issues in the Ada proposal).
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Abstract

Some scheduling techniques, specially in multiprocessor systems, require changing several task attributes atomically to
avoid scheduling errors and artifacts. This work proposes to incorporate the deferred attribute setting mechanism to cope
with this problem in the next Ada 2012.

1 Introduction

A real-time system is usually composed by a set of concurrent task that collaborate to achieve a common goal. A real-time
task has to produce its result within a temporal interval in order to be a valid result. To enforce this behaviour, the real-time
system designer assigns a given priority to each system task. These priorities are used by the underlying real-time operating
system (RTOS) to ensure a timeliness execution of the whole system.

In uniprocessor real-time systems using fixed priorities, the priority of a task tends to remain fixed during its entire lifes-
pan1. However, in uniprocessor systems using dynamic priorities and in several scheduling approaches used in multiprocessor
systems, the task has to update its scheduling attributes during the execution of the task’s code. When several attributes have
to be changed simultaneously some scheduling artifacts can arise if they are not updated atomically, giving rise to erroneous
schedules.

In order to correctly implement these real-time systems with dynamic attribute setting, the underlying run-time system
has to offer some support for atomically changing multiple attributes. This work proposes a flexible and scalable approach to
incorporate this support to the Ada 2012 Run-Time System (RTS).

The rest of the paper is organised as follows: next section presents dynamic attribute changing in uniprocessor systems.
Section 3 deals with multiprocessor scheduling and simultaneous setting of task attributes. Then, section 4 presents the
proposed approach to solve the presented issues. Section 5 proposes to add CPU affinities to Timing_Events with deferred
setting support. Finally, section 6 shows some conclusions.

2 Scheduling Attributes in Uniprocessor Systems

In Ada 2005 the priority of a task is represented by the task attribute Priority and, when the EDF_Across_Priorities
policy is specified, by an absolute deadline. The Ada Run-Time System uses these scheduling attributes to choose which
task or tasks have to be executed at a given instant. The initial value of these scheduling attributes can be specified within the
task definition by means of the following pragmas:

pragma Priority (expression); -- See RM D.1
pragma Relative_Deadline (relative_deadline_expression); -- See RM D.2.6

∗This work was partially supported by the Vicerectorado de Investigación of the Universidad Politécnica de Valencia under grant PAID-06-10-2397 and
European Project OVERSEE (ICT-2009 248333)

1Despite of priority changes due to priority inheritance protocols
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Although on a uniprocessor system the priority of a task is not usually changed by the task itself, a periodic real-time task
scheduled under the EDF policy has to change its absolute deadline on each activation. Ada 2005 offers two procedures to
change the priority and the absolute deadline of a task that are shown bellow:

package Ada.Dynamic_Priorities is
...
procedure Set_Priority(Priority : in System.Any_Priority;

T : in Ada.Task_Identification.Task_Id :=
Ada.Task_Identification.Current_Task);

end Ada.Dynamic_Priorities;

package Ada.Dispatching.EDF is
...
procedure Set_Deadline (D : in Deadline;

T : in Ada.Task_Identification.Task_Id :=
Ada.Task_Identification.Current_Task);

end Ada.Dispatching.EDF;

However, as both procedures are dispatching points, when a task calls the Set_Deadline procedure to update its absolute
deadline before getting suspended until its next release, it could be preempted by a task with a closer deadline, causing the
scheduling artifacts shown in the Figure 1. It can be observed that when task T0 changes its deadline to the next absolute
deadline, the task T1 becomes more urgent and does not allow task T0 to execute its delay until statement until the task
T1 executes its own Set_Deadline procedure.

Task release

Task deadline

TaskId / Task Prio
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T1

delay until

Set_Deadline

Figure 1. Scheduling artifact during Set_Deadline + delay until code sequence.

Although this anomalous behaviour does not cause a great damage in the scenario shown by Figure 1 (the only effect is that
task T0 executes its delay until after its deadline), Ada 2005 provides an additional Delay_Until_And_Set_Deadline
procedure to avoid these artifacts. Its behaviour is defined as follows:

The procedure Delay_Until_And_Set_Deadline delays the calling task until time Delay_Until_Time.
When the task becomes runnable again it will have deadline Delay_Until_Time + Deadline_Offset. (RM
D.2.6 15/2)

Using this procedure, the main loop of a periodic task scheduled under EDF policy will be as follows:

loop -- Body of a periodic task under EDF policy
-- Task code
...
-- Preparation code with scheduling artifacts
Next_Time := Next_Time + Period;
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Set_Deadline(Next_Time + Relative_Deadline);
delay until Next_Time;

end loop;

⇓

loop -- Body of a periodic task under EDF policy
-- Task code
...
-- It performs atomically Set_Deadline + delay until
Next_Time := Next_Time + Period;
Delay_Until_And_Set_Deadline(Next_Time, Relative_Deadline);

end loop;

3 Scheduling Attributes in Multiprocessor Systems

Real-Time and embedded systems are becoming more complex, and multiprocessor/multicore systems are becoming
a common execution platform in these areas. In order to achieve a predictable schedule of a set of real-time tasks in a
multiprocessor platform several approaches can be applied. Based on the capability of a task to migrate from one processor
to another, the scheduling approach can be:

Global scheduling: All tasks can be executed on any processor and after a preemption the current job can be resumed in a
different processor.

If the scheduling decisions are performed on-line, in a multiprocessor platform with M CPUs, the M active jobs with
the highest priorities are the ones selected for execution. If the scheduling decisions are computed off-line, releases
times, preemption instants and processors where tasks have to be executed are stored in a static scheduling plan.

Job partitioning: Each job activation of a given task can be executed on a different processor, but a given job cannot migrate
during its execution.

The processor where each job is executed can be decided by an on-line global dispatcher upon the job activation, or it
can be determined off-line by a scheduling analysis tool and stored in a processor plan for each task. The job execution
order on each processor is determined on-line by its own scheduler using the scheduling attributes of each job.

Task partitioning: All job activations of a given task have to be executed in the same processor. No job migration is allowed.

The processor where a task is executed is part of the task’s scheduling attributes. As in the previous approach, the order
in which each job is executed on each processor is determined on-line by the scheduler of that processor.

In addition to these basic approaches, new techniques that mix task partitioning with task that migrate from one processor
to another at specified times are already available in the literature. In this approach, known as task splitting, some works
suggest to perform the processor migration of the split task at a given time after each job release [1] or when the job has
performed a certain amount of execution [2]. It is worth noting that this approach normally requires the information about
the processor migration instant to be somehow coded into the task behaviour.

To apply some of these scheduling approaches some specific support at kernel and user-space level is needed, e.g. system
and CPU clock timers and dynamic scheduling attributes.

The forthcoming release of Ada 2012 is expected to offer explicit support for multiprocessor platforms through a compre-
hensive set of programming mechanisms shown in Listing 1 [3, 4]. Although these mechanisms have been shown adequate to
apply task and job partitioning, and task splitting techniques [5, 6], they will suffer the same kind of artifact shown in Figure
1. Next subsection shows why the current proposal found in [3, 4] is still inadequate for real-time multiprocessor systems.
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Listing 1. Ada 2012 facilities to set the target CPU
package System.Multiprocessors.Dispatching_Domains is

...
type Dispatching_Domain (<>) is limited private;
...
procedure Assign_Task(Domain : in out Dispatching_Domain;

CPU : in CPU_Range := Not_A_Specific_CPU;
T : in Task_Id := Current_Task);

procedure Set_CPU(CPU : in CPU_Range; T : in Task_Id := Current_Task);
function Get_CPU(T : in Task_Id := Current_Task) return CPU_Range;
procedure Delay_Until_And_Set_CPU(Delay_Until_Time : in Ada.Real_Time.Time;

CPU : in CPU_Range);
end System.Multiprocessors.Dispatching_Domains;

3.1 Multiprocessor scheduling requirements

Some multiprocessor scheduling approaches require to specify the target CPU for each real-time task. Additionally, in
job partitioning and task splitting techniques the target CPU changes during the task lifespan. As each processor can have a
different set of tasks or to use an EDF scheduling policy, moving a task from one CPU to another could also require to change
its priority or its deadline. If all these task attributes are not changed atomically, some scheduling artifacts could arise giving
rise to incorrect schedules.

Figures 2 and 3 shown how a task can miss its deadline trying to change simultaneously its priority and its target CPU.
Both scenarios try to change task T0 from one CPU to another, but using a different priority into the new CPU. In Figure 2
the task T0 losses its deadline while executing the Set_Priority + Set_CPU sequence. After T0 changes its priority, the
task T1 has a greater priority and avoids the task T0 to complete the Set_CPU statement until it is too late. Figure 3 shows
a different scenario where the incorrect sequence is Set_CPU + Set_Priority. The only solution to these situations is to
provide a mechanism to simultaneously change the priority and the target CPU. Similar requirements are needed when using
dynamic priorities.
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Figure 2. Expected and real execution for Set_Priority + Set_CPU code sequence.

Although the scenarios shown in Figures 2 and 3 can be solved by encapsulating both Set_CPU and Set_Priority

inside a protected operation, this cannot be performed when the change of priority/deadline and target CPU is combined
with a delay until statement. As shown in the following examples, no correct sequence of code is valid using the current
multiprocessor support proposal.

loop
-- Task code
...
Next_Time := Next_Time + Period;
Set_Deadline(Next_Time + Relative_Deadline);
Delay_Until_And_Set_CPU(Next_Time, Next_CPU);
-- Similar to scenario with Set_Priority + Set_CPU

end loop;
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loop
-- Task code
...
Next_Time := Next_Time + Period;
Set_CPU(Next_CPU);
Delay_Until_And_Set_Deadline(Next_Time, Relative_Deadline);
-- Similar to scenario with Set_CPU + Set_Priority

end loop;

These sequences of code are common in job partitioning schemes, in order to set the CPU where the next job is going to
be executed before the current job finishes, and in task splitting techniques, in order to reset the original CPU at the end of
the job after one or more splits.

Next section presents a proposal to cope with these kind of scenarios using deferred attributes. This proposal was already
briefly introduced in [6].

4 Deferred Attribute Setting

The Ada 2005 Reference Manual specifies the behaviour for a task that dynamically changes its priority or its deadline:

On a system with a single processor, the setting of the base priority of a task T to the new value occurs immedi-
ately at the first point when T is outside the execution of a protected action. (RM D.5.1 10/2)

On a multiprocessor, the implementation shall document any conditions that cause the completion of the setting
of the priority of a task to be delayed later than what is specified for a single processor. (RM D.5.1 12.1/2)

On a system with a single processor, the setting of the deadline of a task to the new value occurs immediately
at the first point that is outside the execution of a protected action. If the task is currently on a ready queue it is
removed and re-entered on to the ready queue determined by the rules defined below. (RM 2.6 16/2)

However, although the current Ada Issue AI05-167/11 [4] does not specify anything about changing the CPU inside a
protected objects it seems reasonable to apply similar restrictions to the setting of the CPU affinity. The text could be as
follows:

On a system with multiple processors, the setting of the target CPU of a task T to the new value occurs immedi-
ately at the first point when T is outside the execution of a protected action.

In order to follow the above mentioned restrictions, if a task invokes a procedure to change its attributes within a protected
action, the Ada RTS has to defer the priority/deadline/CPU change until the task is outside the execution of the protected
action. This deferred setting of task attributes can be used to solve the scheduling artifacts shown in the previous section.

Ada Letters, April 2013 97 Volume XXXIII, Number 1



This work proposes to add explicit support to perform a deferred setting of task attributes adding the following procedures:

package Ada.Dynamic_Priorities is
...
-- Programs a deferred setting of the base priority
procedure Set_Next_Priority(Priority : in System.Any_Priority;

T : in Task_Id := Current_Task);
...

end Ada.Dynamic_Priorities;

package Ada.Dispatching.EDF is
...
-- Programs a deferred setting of the absolute deadline
procedure Set_Next_Deadline (D : in Deadline; T : in Task_Id := Current_Task);
...

end Ada.Dispatching.EDF;

package System.Multiprocessors.Dispatching_Domains is
...
-- Programs a deferred setting of the target CPU
procedure Set_Next_CPU(CPU : in CPU_Range; T : in Task_Id := Current_Task);
...

end System.Multiprocessors.Dispatching_Domains;

The semantic of these procedures can sketched as:

The deferred setting of a task attribute will delay the effective attribute setting until the next task dispatching
point. If the task T is inside the execution of a protected action, the setting of the new value occurs immediately
at the first point when T is outside the execution of the protected action.

With the introduction of these new procedures, the erroneous code presented in section 3.1 can be rewritten as follows:

loop
-- Task code
...
Next_Time := Next_Time + Period;
Set_Deadline(Next_Time + Relative_Deadline); -- It changes the task deadline ...
Delay_Until_And_Set_CPU(Next_Time, Next_CPU); -- ... and then the CPU affinity

end loop;

or

loop
-- Task code
...
Next_Time := Next_Time + Period;
Set_CPU(Next_CPU); -- It changes the CPU affinity ...
Delay_Until_And_Set_Deadline(Next_Time, -- ... and then the task deadline

Relative_Deadline);
end loop;

⇓
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loop
-- Task code
...
Next_Time := Next_Time + Period;
Set_Next_Deadline(Next_Time + Relative_Deadline); -- It specifies the next deadline
Set_Next_CPU(Next_CPU) -- It specifies the next CPU
delay until Next_Time; -- The next deadline and CPU are ...

-- ... changed atomically
end loop;

As delay until statement is a task dispatching point, the deferred attributes set by Set_Next_Deadline and Set_Next_CPU
take effect at that point. Also the code described in the scenarios of Figures 2 and 3 can be easily solved with the new proce-
dures, as shown in the right side of the next listings.

loop
-- Task code
...
Set_Priority(Next_Priority);
Set_CPU(Next_CPU);
...

end loop;

loop
-- Task code
...
Set_CPU(Next_CPU);
Set_Priority(Next_Priority);
...

end loop;

⇒

loop
-- Task code
...
Set_Next_Priority(Next_Priority);
Set_CPU(Next_CPU);
...

end loop;

loop
-- Task code
...
Set_Next_CPU(Next_CPU);
Set_Priority(Next_Priority);
...

end loop;

The proposed procedures give rise to a more orthogonal and cleaner task code. It can also be extended to cover other
existing task attributes or new proposed ones, if required. On the other side, the procedure Delay_Until_And_Set_CPU

will become unnecessary and the procedure Delay_Until_And_Set_Deadline deprecated.

5 CPU affinity of Timing Events

Another feature of Ada 2005 highly required to support some of the multiprocessor scheduling approaches are the
Timing_Events. They allow a task to program the execution of protected actions at specific time instants, e,g. to pro-
gram future changes to its task attributes, required to perform a task split.

However, when Timing_Events are used to wake up a real-time task, it should be taken into account that the processor
where the task has to be executed can be different from the one used to program the TimingEvent. This scenario can
introduce a unnecessary scheduling overhead: a TimingEvent produces a clock interrupt in a processor P1, this processor
executes the TimingEvent handler and wakes up a task that has to be executed in a different processor P2; after the handler
execution, the processor P1 has to send an Inter-Processor Interrupt (IPI) to force the scheduler execution in processor P2.
It will be clearly more efficient, if the TimingEvent handler can be programmed to be executed directly in processor P2.
However, implementation details have to be carefully studied in the case of using multiple timer queues. In this case, if the
timer queue of the target processor P2 is empty, the above scenario may require also an IPI to program the clock interrupt in
P2.

Despite of these implementations details, this work proposes to add explicit support to control the CPU affinity of a
TimingEvent. The proposal requires to modify the package Ada.Real_Time.Timing_Events to add the following pro-
cedures:
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package Ada.Real_Time.Timing_Events is
type Timing_Event is tagged limited private;
...
-- Set the CPU where the current handler has to be executed
procedure Set_CPU(Event : in out Timing_Event; CPU : in CPU_Range);
-- Set the CPU where the next handler established with Set_Handler has to be executed
procedure Set_Next_CPU(Event : in out Timing_Event; CPU : in CPU_Range);
...

end Ada.Real_Time.Timing_Events;

The procedure Set_CPU allows the programmer to specify where the handler that is already set has to be executed. It
allows changing the target CPU of a programmed TimingEvent if the implicated task migrates from one CPU to another 2.
The procedure Set_Next_CPU establishes the target CPU to be used for the next handler when the procedure Set_Handler
was used. If no handler is set, both procedures behave identical.

Depending on the available clock interrupt hardware, the Ada RTS can implement one or multiple queues to store the
active Timing_Events. In the case of a global Timing_Events queue, the CPU information can be used to configure the
interrupt controller and set the clock interrupt affinity to the target CPU of the closer event. In the case of a per-CPU clock
interrupt hardware, multiple Timing_Events queues can be used. This could require to move Timing_Events from one to
another when the Set_CPU is used. In both cases, the invocation of the procedure Set_CPU can require a reconfiguration of
the clock interrupt hardware, while the invocation of the Set_Next_CPU is only used to configure the next event or to store
it in a processor specific events queue.

6 Conclusions

A small set of modifications for the next Ada 2012 have been proposed to allow simultaneous setting of multiple task
attributes. This behaviour is required to adequately support some of the multiprocessor scheduling approaches. The proposed
solution is based on the introduction of deferred attributes.

The setting of deferred attributes allows the application to specify a set changes of task attributes that a task will apply
in the next dispatching point. This gives rise to a simpler and scalable interface for simultaneously changing multiple task
attributes. A similar interface has been proposed for the Timing_Events mechanism, allowing the Ada RTS to implement
it efficiently in multiprocessor platforms.
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Abstract

The vulnerability methodology of the ISO/IEC/JTC 1/ SC 22/ WG 23 Programming Language
Vulnerabilities Working Group is applied to the problem space of concurrency. A set of vulnerabilities
is developed to capture the issues thread creation, thread termination, shared data access, resource
hijacking and communication protocols..

 1 Introduction
Software has always been at risk to failures due to mistakes in development, or due to attacks that exploit
vulnerabilities in the code. A number of organisations, including the US Department of Homeland Security
(DHS), the Open Web Application Security Project (OWASP), the Web Application Security Consortium
(WASC) and the International Standards Organisation's Programming Language Vulnerabilities Working
Group (ISO/IEC/JTC 1/SC 22/WG 23) are categorising ways that programs are being attacked and recom-
mending approaches to counter threats to software. However, as noted by [BW 2009], the taxonomies being
developed have largely left the issues of failures or attacks based upon the concurrent aspects of a program
as future work. 

The reasons for delaying the tackling of vulnerabilities associated with concurrency stem from the com-
plexity of the overall issues being addressed, the complexity that concurrency adds, and the relatively small
amount of real-life data available to consider concurrency vulnerabilities.

This paper will examine the problem space from the view of WG 23, and will propose a set of language-in-
dependent vulnerabilities that can be recommended to WG 23 for inclusion of the next version of  their vul-
nerability technical report[TR 24772].

The paper is organised as follows. Section 2 discusses rationale behind the work. Section 3 discusses the
general issue of concurrency vulnerabilities. Section 4 is a summary of the vulnerabilities examined. Sec-
tion 5 is a detailed writeup of six vulnerabilities, each one following a standard pattern of TR 24772. Sec-
tion 6 is conclusions and future work.

 2 Vulnerability Work Undertaken
The Department of Homeland Security, through the Mitre Corp, has produced the Common Vulnerabilities
Evaluation  database[CVE], the Common Weakness Enumeration database[CWE] and the Common Attack
Pattern Enumeration and Classification database[CAPEC]. All of these are based on “found in the wild”
disruptions. CVE identifies individual instances of known weaknesses in applications and number in the
thousands of identified items. CWE identifies more than 800  weaknesses that are a generalisation and ag-
gregation of CVE vulnerabilities. CAPEC is a taxonomy of attack patterns and identifies almost 300 known
attack patterns. [OWASP] and [WASC] use different categorisations, but arrive at similar levels of detail. 

ISO/IEC/SC 22/WG 23 produces an international technical report, [TR 24772] that coalesces vulnerabilit-
ies at a higher level,  and attempts to identify programming language features that make attacks and failures
easier or more difficult to effect. The first report, published in 2010, contained 53 programming language
vulnerabilities and 17 language-agnostic vulnerabilities. WG 23 is working on a second version of the doc-
ument that will add more vulnerabilities and add annexes that map vulnerabilities into programming lan-
guage specific guidance on avoiding vulnerabilities.
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 3 Concurrency Issues in Programming Language Vulnerabilities
Everyone working in the software security field has been aware that issues surrounding concurrency and
vulnerabilities need to be addressed. There are a number of reasons that concurrency issues have not yet
been addressed by WG 23:

1. The number and variety of attacks and threats that do not rely upon any aspect of concurrency are
so pervasive that they have dominated the vulnerability analyses space. 

2. Most of the analyses done to date has relied to a large part  on attacks and failures that  have
occurred;

3. Most attacks and failures that have been catalogued have been found in threats to memory, input
validation, command line processing, data weaknesses, but rarely to concurrent behaviours.

For example, in the CWE database, there are a few concurrency-related issues, such as ID 367 Time-of-
Check-Time-of-Use, ID 362  “Concurrent Execution using Shared Resource with Improper Synchroniza-
tion”, ID 833 “Deadlock”, ID 667 Improper Locking, and ID 414 “Missing Lock Check”. It should be
noted that the relative threat of these vulnerabilities has been seen to be significantly lower than that of oth-
ers. In fact, in the SANS/CWE “Top 25” there is exactly one concurrency-related weakness identified, ID
362 “Concurrent Execution using Shared Resource with Improper Synchronization” which is last in the top
25.

WG 23 has attempted to take a higher level look at vulnerabilities than has been done by most of the other
works. For example, [TR24772] attempts to discuss buffer overflows as a single problem, instead of ad-
dress underflows, overflows, read access violations, write access violations, on stack and on heap violations
as separate vulnerabilities. However, WG 23 has also struggled to capture concurrency vulnerabilities at the
right level. Suggestions for inclusion have ranged from creating a single vulnerability that captures the
most relevant concurrency misuses to documenting all 35 identified vulnerabilities in [BW 2009]. Neither
solution is acceptable, so a different consideration of concurrency vulnerabilities is required. 

 4  Proposal for WG 23 Concurrency Vulnerabilities
Concurrency vulnerabilities are important to the communities served by WG 23 for a number of reasons.
First, TR 24772 serves more than the security community by explicitly trying to address errors that happen
by accident as well as by deliberate actions. Secondly, concurrent systems are becoming more prevalent as
multiprocessor systems,  cloud computing,  client-server  applications and large scale computing become
commonplace. Thirdly, as more traditional vulnerabilities are being addressed by the operating systems and
by analysis tools, attackers look towards leveraging other difficult to protect paradigms such as concur-
rency to gain footholds into systems. For these reasons, it is imperative that concurrency vulnerabilities be
addressed in the next release of TR 24772.

There are many ways to address concurrency vulnerabilities. One could attempt to to roll all vulnerabilities
into single writeup or break them into a set approximately as numerous as [BW 2009]. Our  approach was
to look at the major interactions of threads (and of processes) and attempt to organise around those. For the
record, these major interactions would be: at the startup of a thread, at the termination of a thread; when
threads share data; when threads share a communication protocol; and when threads interact with their en-
vironment. Some of these larger groupings create significant complexity when discussing the issues that
arise and require further refinement, so the following vulnerabilities are proposed:

1. Thread creation and activation Issues  (CGA1) – including static, dynamic creation, synchronised
activation, unsynchronised activation, resource issues, and error propagation.

1 The three letter designation is a mechanism used by WG 23 to track and manage vunerabilities. In TR
24772 throughout its development, vulnerability writeups have been split, merged, reordered and moved
between clause 6 and 7. The three letter code remains constant for a given vulnerability. The code itself
is effectively random and should not be treated as an acronym. 
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2. Premature termination (CGS) – vulnerabilities that occur when a thread aborts or terminates be-
fore it is expected to finish.

3. Directed termination (CGT) – vulnerabilities that occur when a thread is directed to abort or ter-
minate but does not finish to the expectations of the thread that directed the termination.

4. Shared data access (CGX) – vulnerabilities that can occur as a result of direct update to shared
data.

5. Concurrent Data Access and Corruption (CGY) – vulnerabilities that can occur in concurrent sys-
tems when shared resources (such as files, or environment variables) are visible and available to
other processes.

6. Protocol failures, including deadlock, livelock, monitors, synchronous messaging (CGM).

7. Clocks, scheduling, priorities (Real time vulnerabilities).

Proposed write  ups  for  items 1-6  are  attached in  Annex A to  this  document.  The final  item,  Clocks,
scheduling and priorities, is still under development. It is proposed that these write ups be reviewed, pos-
sibly amended by IRTAW 15 and submitted to WG 23 as a recommended set of concurrency vulnerabilities
for inclusion in the next release of [TR 24772]. Assistance in finishing number 7 would also be greatly ap-
preciated2.

 5 Vulnerability Write ups
The write ups of each vulnerability follow the form adopted by WG 23, since the intention is that this
material be directly usable by WG 23. 

 5.1 Concurrency – Activation [CGA]

 5.1.0 Terminology3

Activation : The creation and setup of a thread up to the point where it begins execution. Threads may
depend upon one or more other threads to define its existence for objects to be accessed and to determine
the duration time of execution. 

Activated thread: The thread that is created and begins execution as a result of the activation.

Activating thread: The thread that exists first and makes the library calls or contains the language syntax
that  causes new threads to be Activated. The Activating Thread may or may not wait for the Activated
Thread to finish activation and may or may not check for errors if the activation fails. The Activating
Thread may or may not be permitted to terminate until after the Activated Thread terminates.

Static Activation: The creation and initiation of a thread by program initiation, an operating system or
runtime kernel, or by another thread as part of a declarative part of the thread before it begins execution. In
static activation, a static analysis can determine exactly how many threads will be created and how much
resource,  in  terms  of  memory,  processors,  cpu  cycles,  priority  ranges  and  inter-thread  communication
structures, will be needed by the executing program before the program begins.

Dynamic Thread Activation: The creation and initiation of a thread by the another thread (including the
main program) as an executable, repeatable command, statement or subprogram call. 

Thread: A lightweight process that shares memory space with other threads.

2 Indeed, discussion of the real time vulnerabilities occurred at the workshop, and the results of this work will be considered by
ISO/IEC/JTC 1/SC 22/WG 23 for inclusion in  ISO IEC TR WD 24772.

3 This section and all other sections labelled 5.x.0 are terminology identified in each vulnerability and will be collated
and placed into a general terminology section in the final document.
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 5.1.1  Description of Application Vulnerability
A thread is activated,  but the lack of some resource or a programming error prevents the activation from
completing. The activating thread may not have sufficient visibility or awareness into the execution of the
activated thread to determine if it has indeed been activated at the point that it is needed. The unrecognised
activation failure can cause a protocol failure in the activating  thread or in other threads that rely upon
some action by the unactivated thread. This may cause the other thread(s) to wait forever for some event
from the unactivated thread,  or may cause an unhandled event or exception in the other threads.

 5.1.2  Cross References
Hoare A., "Communicating Sequential Processes", Prentice Hall, 1985

Holzmann G., "The SPIN Model Checker: Principles and Reference Manual"., Addison Wesley
Professional. 2003

UPPAAL, available from www.uppaal.com, 

Larsen, Peterson, Wang, "Model Checking for Real-Time Syetems"., Proceedings of the 10th
International Conference on Fundamentals of Computation Theory, 1995 

Ravenscar Tasking Profile, specified in ISO/IEC 8652:1995 Ada with TC 1:2001 and AM 1:2007

CWE 364 Signal Handler Race Condition

 5.1.3  Mechanism of Failure
All threads except the main thread must be activated by program steps of another thread. The activation of
each thread requires that dedicated resources be created for that thread, such as a thread stack, thread attrib-
utes, and communication ports. If insufficient resources remain when the activation attempt is made, the ac-
tivation will fail. Similarly, if there is a program error in the activated thread or if the activated thread de-
tects an error that causes it to terminate before beginning its main work, then it may appear to have failed
during activation. When the activation is “static”, resources have been preallocated so activation failure  be-
cause of a lack of resources will not occur, however errors may occur for reasons other than resource alloc-
ation and the results of an activation failure will be similar.

If the activating thread waits for each activated thread, then the activating thread will likely be notified of
activation failures (if the particular construct or capability supports activation failure notification) and can
be programmed to take alternate action. If notification occurs but alternate action is not programmed, then
the program will execute erroneously. If the activating thread is loosely coupled with the activated threads,
and the activating thread does not receive notification of a failure to activate, then it may wait indefinitely
for the unactivated task to do its work, or may make wrong calculations because of incomplete data.

The single activation is a special case of activations of collections of threads simultaneously. This paradigm
(activation of collections of threads) can be used in Ada with arrays of tasks that activate as part of their de-
claration, or in other languages that parallelise calculations and create anonymous threads to execute each
slice of data. In such situations the activating thread is unlikely to individually monitor each activated
thread, so a failure of some to activate without explicit notification to the activating thread can result in er-
roneous calculations.

If the rest of the application is unaware that an activation has failed, an incorrect execution of the applica-
tion algorithm may occur, such as deadlock of threads waiting for the activated thread.

Activation failures usually result in deadlock of the application, or cause errors and incorrect calculations
that may cause the user to lose trust in the application. It would be unlikely that an external attacker could
take control of a system simply by causing activation failures; however when coupled with other vulnerab-
ilities, activation failures could be used to change calculations or to further other attacks.
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 5.1.4  Applicable Language Characteristics
Languages that permit concurrency within the language, or that use support libraries and operating systems
(such as POSIX or  Windows) that  provide concurrency control  mechanisms.  In essence all  traditional
languages on fully functional operating systems (such as POSIX-compliant OS or Windows) can access the
OS-provided mechanisms.

 5.1.5  Avoiding the Vulnerability or Mitigating its Effects
Software developers can avoid the vulnerability or mitigate its effects in the following ways: 

 Always check return codes on OS, library provided or language thread activation routines.

 Handle errors and exceptions that  occur on activation. 

 Create  explicit  synchronisation  protocols,  to  ensure  that  all  activations  have  occurred  before
beginning the parallel algorithm, if not provided by the language or by the threading subsystem. 

 Use programming language provided features that couple the activated thread with the activating
thread to detect activation errors so that errors can be reported and recovery made.

 Use static  activation in preference to dynamic activation so that  static  analysis can guarantee
correct activation of threads.

 5.1.6  Implications for Standardisation
In future standardisation activities, the following items should be considered: 

 Consider including automatic synchronisation of thread initiation as part of the concurrency
model.

 5.2   Concurrency – Directed Termination [CGT]

  5.2.0 Terminology
Abort: The completion and shut down of a thread, where the thread is not permitted any execution after the
command to abort has been received by the thread, or by the runtime services that control the thread. In
particular, the thread will not be able to release any locks that it has explicitly acquired, and may not release
any OS provided locks or data structures.

Abort deferred region: A section of code where a thread is permitted to ignore abort directives, usually be-
cause it is holding a system resource or the risk of corruption to the application is significant while the
thread is manipulating certain resources.

Termination: The completion and orderly shutdown of a thread, where the thread is permitted  to make data
objects consistent, return any heap-acquired storage, notify any dependent threads that it is terminating, and
finalise system resources dedicated to the thread. There are a number of steps in the termination of a thread
as listed below, but depending upon the multithreading model, some of these steps may be combined, may
be explicitly programmed, or may be missing.

 The termination of programmed execution of the thread, including termination of any synchronous
communication;

 The finalisation of the local objects of the thread;

 Waiting for any threads that may depend on the thread to terminate;

 Finalisation of any state associated with dependent threads;

 Notification of outer scopes that finalisation is complete, including possible  notification of the
activating task; and
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 Removal and cleanup of thread control blocks and any state accessible by the thread by possibly
threads in outer scopes.

Terminated Thread: The thread that is being halted from any further execution.

Termination Directing Thread: The thread (including the OS) that requests the abort or termination of one
or more threads.

 5.2.1  Description of Application Vulnerability
This discussion is associated with the effects of unmet termination directives. For a discussion of premature
termination, see CGT Concurrency – Premature Termination.

When a thread is working cooperatively with other threads and is directed to terminate, there are a number
of error situations that may occur that can lead to compromise of the system. The termination directing
thread may request that one or more other threads abort or terminate, but the terminated thread(s) may not
be in a state such that the termination can occur, may ignore the direction, or may take longer to abort or
terminate then the application can tolerate.

Late termination may cause a failure to meet deadlines, implying incomplete calculation, leading the ap-
plication to deliver no results or incorrect results. Non-termination may cause deadlock, livelock, failure to
release resources, and corrupted data abstractions. All of these may lead to failure of the application.

 5.2.2   Cross References
Hoare C.A.R., "Communicating Sequential Processes", Prentice Hall, 1985

Holzmann G., "The SPIN Model Checker: Principles and Reference Manual"., Addison Wesley
Professional. 2003

Larsen, Peterson, Wang, "Model Checking for Real-Time  Systems"., Proceedings of the 10th
International Conference on Fundamentals of Computation Theory, 1995

 The Ravenscar Tasking Profile, specified in ISO/IEC 8652:1995 Ada with TC 1:2001 and AM
1:2007

 CWE 364 Signal Handler Race Condition

 5.2.3  Mechanism of Failure
The abort of a thread may not happen if a thread is in an abort-deferred region and does not leave that re-
gion (for whatever reason) after the abort directive is given. Similarly, if abort is implemented as an event
sent to a thread and it is permitted to ignore such events, then the abort will not be obeyed.

The termination of a thread may not happen if the thread ignores the directive to terminate, or if the termin-
ation process raises exceptions that result in the thread not terminating.

The termination directing thread will be expecting the thread(s) to terminate (or abort) and may proceed on
the expectation that the abort/termination occurred. If some of the threads that were directed to terminate do
not terminate, then the overall application will not move on to the next phase of the application, or will pro-
duce erroneous results.

Livelock, the freeze-up of a system because some threads start cycling indefinitely, or deadlock, the freeze-
up of the system because some threads are blocked waiting for other threads (such as waiting for them to
terminate) are distinct possibilities resulting from this vulnerability. Arbitrary execution of  random code is
also a distinct possibility from some kinds of termination errors, but arbitrary execution of known code is
not likely since it is hard to determine where nonterminating threads will be in their execution when the ter-
minating thread notification is delivered. 

 5.2.4  Applicable Language Characteristics
Languages that permit concurrency within the language, or support libraries and operating systems (such as
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POSIX-compliant OSs or Windows) that provide hooks for concurrency control. 

 5.2.5  Avoiding the Vulnerability or Mitigating its Effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 

 Use a language that provides a complete concurrency mechanism. 

 Use mechanisms of the language or system to determine that aborted threads or threads directed to
terminate are indeed terminated. Such mechanisms may be direct communication, runtime-level
checks, explicit dependency  relationships,  or progress counters in shared communication code to
verify progress

 Program fall-back handlers to report or recover from failure to terminate situations.

 5.2.6  Implications for Standardisation
In future standardisation activities, the following items should be considered: 

 Provide a mechanism (either a language mechanism or a service call) to signal another thread  (or
an entity that can be queried by other threads) when a thread terminates.

 5.3 Concurrency – Premature Termination [CGS]

 5.3.0 Terminology
Abort: A request to immediately stop and shut down a thread. The request is asynchronous if from another
thread, or synchronous if from the thread itself. The effect of the abort request (e.g. whether it is treated as
an exception) and its immediacy (i.e., how long the thread may continue to execute before it is shut down)
depend on language-specific  rules.  Immediate  shutdown minimises  latency but  may leave  shared data
structures in a corrupted state.

Termination Directing Thread: The thread (including the OS) that requests the abort of one or more threads.

Termination: The completion and orderly shutdown of a thread, where the thread is permitted  to make data
objects consistent, return any heap-acquired storage, and notify any dependent threads that it is terminating.
There are a number of steps in the termination of a thread as listed below, but depending upon the multith-
reading model, some of these steps may be combined, may be explicitly programmed, or may be missing.

 The termination of programmed execution of the thread, including termination of any synchronous
communication;

  The finalisation of the local objects of the thread;

  Waiting for any threads that may depend on the thread to terminate;

  Finalisation of any state associated with dependent threads;

  Notification of outer scopes that finalisation is complete, including possible  notification of the
activating task;

 Removal and cleanup of thread control blocks and any state accessible by the thread by possibly
threads in outer scopes.

Terminated Thread: The thread that is being halted from any further execution.

Master of a Thread: Any thread which must wait for the terminated thread before it can take further execu-
tion steps (including termination of itself).

 5.3.1  Description of Application Vulnerability
When a thread is working cooperatively with other threads and terminates prematurely for whatever reason
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but unknown to other threads, then the portion of the interaction protocol between the terminating thread
and other threads is damaged. This may result in: indefinite blocking of the other threads as they wait for
the terminated thread if the interaction protocol was synchronous; other threads receiving wrong or incom-
plete results if the interaction was asynchronous; or deadlock if all other threads were depending upon the
terminated thread for some aspect of their computation before continuing.

 5.3.2  Cross References
Hoare C.A.R., "Communicating Sequential Processes", Prentice Hall, 1985

Holzmann G., "The SPIN Model Checker: Principles and Reference Manual"., Addison Wesley
Professional. 2003

Larsen, Peterson, Wang, "Model Checking for Real-Time  Systems"., Proceedings of the 10th
International Conference on Fundamentals of Computation Theory, 1995

The Ravenscar Tasking Profile, specified in ISO/IEC 8652:1995 Ada with TC 1:2001 and AM
1:2007

CWE 364 Signal Handler Race Condition

 5.3.3  Mechanism of Failure
If a thread terminates prematurely, threads that depend upon services from the terminated thread (in the
sense of waiting exclusively for a specific action before continuing) may wait forever since held locks may
be left in a locked state resulting in waiting threads never being released.

If  a thread depends on the terminating thread and receives notification of termination, but the dependent
thread ignores the termination notification, then a protocol failure will occur in the dependent thread. For
asynchronous termination events,  an unexpected event may cause immediate transfer of control from the
execution place of dependent thread to another (possible unknown), resulting in corrupted objects or re-
sources; or may cause termination in the master thread, and an expected propagation of failures. 

These conditions can result in 

 premature shutdown of the system;

 corruption or arbitrary execution of code;

 livelock;

 deadlock; 

depending upon how other threads handle the termination errors. 

If the thread termination is the result of an abort and the abort is immediate, there is nothing that can be
done within the aborted thread to prepare data  for return to master tasks, except possibly the management
thread or  OS notifies  others  that  the  event  occurred.   If  the  aborted  thread was  holding resources  or
performing active updates when aborted, then any direct access by other threads to such locks, resources or
memory may result in corruption of those threads or of the complete system, up to and including arbitrary
code execution.

Arbitrary execution of  random code is  distinct possibility from some kinds of termination errors,  but
arbitrary execution of known code is not likely since it is hard to determine where nonterminating threads
will be in their execution when the terminating thread notification is delivered. 

 5.3.4  Applicable Language Characteristics
Languages that permit concurrency within the language, or support libraries and operating systems (such as
POSIX-compliant OSs or Windows) that provide hooks for concurrency control. 
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 5.3.5  Avoiding the Vulnerability or Mitigating its Effects
Software developers can avoid the vulnerability or mitigate its ill effects in the following ways: 

 Use a language that provides a complete concurrency mechanism. 

 Use mechanisms of the language or system to determine that necessary threads are still  operating.
Such  mechanisms  may  be  direct  communication,  runtime-level  checks,  explicit  dependency
relationships,  or progress counters in shared communication code to verify progress

 Handle events and exceptions from termination events

 Program fall-back handlers to report or recover from premature termination failures.

 Provide  manager  threads  to  monitor  progress  and  to  collect  and  recover  from  improper
terminations or abortions of threads.

 5.3.6  Implications for Standardisation
In future standardisation activities, the following items should be considered: 

 Provide a mechanism (either a language mechanism or a service call) to preclude the abort of a
thread from another thread during critical pieces of code. Some languages (eg Ada or real time
Java) provide a notion of an abort-deferred region.

 Provide a mechanism (either a language mechanism or a service call) to signal another thread  (or
an entity that can be queried by other threads) when a thread terminates.

 Provide a structure within the concurrency service (either a language mechanism or a service  call)
that defers the delivery of asynchronous exceptions or asynchronous transfers of control.

 5.4 Concurrency Data Access [CGX]

 5.4.0 Terminology

Thread: A lightweight process that shares memory space with other threads.

 5.4.1  Description of Application Vulnerability
Concurrency presents a significant challenge to program correctly, and has a large number of possible ways
for failures to occur, quite a few known attack vectors, and many possible but undiscovered attack vectors.
In particular, any resource that is visible from more than one thread and is not protected by a sequential
access lock can be corrupted by out-of-order accesses. This corruption can lead to resource corruption,
premature program termination, livelock, or system corruption.

 5.4.2  Cross References
Burns A. and Wellings A., Language Vulnerabilities - Let’s not forget Concurrency, IRTAW 14,
2009.

CWE 214 Information Exposure Through Process Environment

CWE 362 - Concurrent Execution using Shared Resource with Improper Synchronization ('Race
Condition')

CWE 366 Race Condition Within a Thread

CWE 368 – Context Switching Race Conditions

CWE 413 Improper Resource Locking
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CWE 764 Multiple Locks of a Critical Resource

CWE 765 Multiple Unlocks of a Critical Resource

CWE 821 Missing Synchronization

CWE 821 Incorrect Synchronization

 5.4.3  Mechanism of Failure
All data that is openly visible to multiple threads is shared data and is open to being monitored or updated
directly by a thread, whether or not that data has an access lock protocol in operation. Some concurrent
programs do not use access lock mechanisms but rely upon other mechanisms such as timing or other
program state to determine if shared data can be read or updated by a thread. Regardless, direct visibility to
shared data permits direct access to that data concurrently. This can permit the following errors:

 Lost data or control signals by multiple updates by one thread without corresponding reads by
another thread;

 Simultaneous updates of different portions of the data by different threads, resulting in corruption
of the data;

 Simultaneous updates of different portions of the data by different threads, resulting in wrong data
being passed;

 Missing or corrupt data;

 Precisely written (but wrong) data that changes the behaviour of the program to undertake new
objectives;

 Livelock when necessary data is missed or never correctly read.

The  above  scenarios  usually  result  in  corruption,  livelock,  or  corrupted  applications.  Results  such  as
arbitrary code execution are usually not achievable because threads are programmed and built into the same
application, but when combined with other attacks and vulnerabilities, arbitrary code execution may be
possible.

 5.4.4  Applicable Language Characteristics
The vulnerability is intended to be applicable to languages with the following characteristics:

 Languages that provide explicit concurrency in the language, such as tasks, threads, processes, and
potentially share data between threads these entities.

 Languages  that  provide  explicit  concurrency  and  protected  regions  of  sequential  access  and
explicit concurrency control mechanism, such as suspend(thread), block(thread), resume(threads),
enable(interrupt), and disable(interrupt)

 5.4.5  Avoiding the Vulnerability or Mitigating its Effects
Software developers can avoid the vulnerability or mitigate its effects in the following ways.

 Place all data in memory regions accessible to only one thread at a time.

 Use languages and those language features that provide a complete sequential protection paradigm
to protect against data corruption. Ada's protected objects and Java's Protected class each provide a
safe paradigm when accessing objects that are exclusive to a single program. 

 Use operating  system primitives,  such  as  the  POSIX pthread_xxx primitives  for  locking  and
synchronisation to develop a protocol equivalent to the Ada “protected” and Java “Protected”
paradigm.
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 Where  state  based  mutual  exclusion  is  important  for  correctness,  implement  blocking  and
releasing paradigms, or provide a test in the same protected region to check for correct order and
generate errors if the test fails. For example, the following structure in Ada would implement an
enforced order.

       package buffer_pkg is
   protected Buffer is
      entry Read (Data :    out Data_Type);
      entry Write (Data : in    Data_Type);
   private
      ...;
   end Buffer;
end Buffer_Pkg.

 In this case, the writer must block until there is room to write a new record, and readers must block if there
are no records available. 

 5.4.6  Implications for Standardisation
In future standardisation activities, the following items should be considered: 

 Languages that do not presently implement concurrency but are considering the addition of thread-
based concurrency should  consider  creating primitives  that  let  applications  specify  regions  of
sequential access to data. Mechanisms such as protected regions, Hoare monitors or synchronous
message  passing  between  threads  result  in  significantly  fewer  resource  access  mistakes  in  a
program.

 Provide the possibility of selecting alternative concurrency models that support static analysis,
such as one of the models that are known to have safe properties. For examples, see [CSP] and
[Ravenscar].

 5.5 Concurrency Data Corruption [CGY]
Note: This vulnerability should go into Clause 7 and not be included in Programming Language
vulnerabilities. It has been written as a programming language vulnerability, but will need rewriting to fit
into the clause 7 organization.

 5.5.0 Terminology
Stateless Protocol: A communication or cooperation between threads where no state is preserved in the
protocol itself  (example HTTP or direct access to a shared resource).  Since most interactions between
processes  require  that  state  be  preserved,  the  cooperating  threads  must  use  values  of  the  resources(s)
themselves or add additional communication exchanges to maintain state. 

Stateless protocols require that the application provide explicit resource protection and locking mechanisms
to guarantee the correct creation, view, access to,  modification of, and destruction of the resource – i.e.  the
state needed for correct handling of the resource).

Process: A single execution of a program, or portion of an application. Processes often share a common
processor, or network, or operating system or filing system or environment variables or other resources, but
do not share a common memory space. Processes are usually started and stopped by an operating system
and may or may not interact with other processes.

 5.5.1  Description of Application Vulnerability
A resource that is directly visible from more than one process (at the same approximate time) and is not
protected by access locks can be hijacked or used to corrupt, control or change the behaviour of other
processes in the system. This corruption can lead to resource corruption, premature program termination,
livelock, system corruption, or arbitrary execution of code.
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Many vulnerabilities that are associated with concurrent access to files, shared memory or shared network
resources fall under this vulnerability, including resources accessed via stateless protocols such as HTTP
and remote file protocols. 

 5.5.2  Cross References
Burns A. and Wellings A., Language Vulnerabilities - Let’s not forget Concurrency, IRTAW 14,
2009.

CWE 642 External Control of Critical State Data

CWE 15 External Control of System or Configuration Setting

 5.5.3  Mechanism of Failure
Any time that a shared resource is open to general inspection, the resource can be monitored by a foreign
process to determine usage patterns, timing patterns, and access patterns to determine ways that a planned
attack can succeed.4 Such monitoring could be, but are not limited to:

 Read resource values to obtain information of value to the applications

 Monitoring  access  time  and  access  thread  to  determine  when  a  resource  can  be  accessed
undetected  by  other  threads  (for  example,  Time-of-Check-Time-Of-Use  attacks  rely  upon  a
determinable amount of time passage between the check on a resource and the use of the resource
when the resource could be modified to bypass the check);

 Monitor a resource and modification patterns to help determine the protocols in use.

 Monitor access times and patterns to determine quiet times in the access to a resource that could
be used to find successful attack vectors

This monitoring can then be used to construct a successful attack, usually in a later attack.

Any time that a resource is open to general update the resource can be changed by a foreign process to:

 Determine how such changes affect usage patterns, timing patterns, access patterns to determine
ways that a planned attack can succeed. 

 Determine how well application threads detect and respond to changed values

Any time that a shared resource is open to shared update by a thread, the resource can be changed in ways
to further an attack once it is initiated. For example, a well known attack monitor's a certain change to a
known file and then immediately replaces a virus free file with an infected file to bypass virus checking
software.

With careful  planning,  the above scenarios occurrence can result  in the foreign process determining a
weakness of the attacked process and an exploit consisting of anything up to and including arbitrary code
execution.

 5.5.4  Avoiding the Vulnerability or Mitigating its Effects
Software developers can avoid the vulnerability or mitigate its effects in the following ways.

 Place all shared resources in memory regions accessible to only one process  at a time.

 Protect resources that must be visible with encryption or with checksums to detect unauthorised
modifications.

 Protect access to shared resources using permissions, access control, or obfuscation.

4 Such monitoring is almost always possible by a process executing with system privilege, but even small slips in access controls
and permissions lets such resources be seen from other processes. Indeed, even the existence of the resource, its size, or its access
dates/times and history (such as “last accessed time”) can give valuable information to an observer.
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 Have and enforce very clear rules with respect to permissions to change shared resources.

 Detect attempts to alter shared resources and take immediate action

 5.6 Protocol Lock Errors [CGM]

 5.6.0 Terminology
Protocol: A set of rules and supporting structures for the interaction of threads or processes. A protocol can
be tightly embedded and rely upon data in memory and hardware locks up to communications spanning
networks and computer systems.

Thread: A lightweight process that shares memory space with other threads.

 5.6.1  Description of Application Vulnerability
All concurrent programs, use protocols to control

 The way that threads interact with each other, 

 How to schedule the relative rates of progress, 

 How threads participate in the generation and consumption of data

 The allocation of threads to the various roles

 The preservation of data integrity, and 

 The detection and correction of incorrect operations. 

When protocols are incorrect, or when a vulnerability lets an exploit destroy a protocol, then the concurrent
portions fail to work co-operatively and the system behaves  incorrectly.

This  vulnerability is  related to [CGX] Shared Data Access and Corruption,  which discusses situations
where the protocol to control access to resources is explicitly visible to the participating partners and makes
use of visible shared resources. In comparison, this vulnerability discusses scenarios where such resources
are protected by protocols, and considers ways that the protocol itself may be misused.

 5.6.2  Cross References
C.A.R Hoare, A model for communicating sequential processes, 1980

Larsen, K.G., Petterssen, P, Wang, Y, UPPAAL in a nutshell, 1997

Lundqvist, K and Asplund, L., “A Formal Model of a Run-Time Kernel for Ravenscar”, The 6th
International Conference on Real-Time Computing Systems and Applications – RTCSA 1999, 

CWE 667 Improper Locking

CWE 413 Improper Resource Locking

CWE 414 Missing Lock Check

CWE 833 Deadlock

CWE 609 Double Checked Locking

CWE 821 Incorrect Synchronization

 5.6.3  Mechanism of Failure
All  threads use locks and protocols to schedule their work, control access to resources, exchange data, and
to effect communication with each other. Protocol errors occur when the expected rules for co-operation are

Ada Letters, April 2013 113 Volume XXXIII, Number 1



not followed, or when the order of lock acquisitions and release causes the threads to quit working together.
These errors can be as a result of deliberate termination of one or more threads participating in the protocol,
disruption of messages or interactions in the protocol, errors or exceptions raised in threads participating in
the protocol, or errors in the programming of one or more threads participating in the protocol.

In such situations, there are a number of  possible consequences. One common consequence is “deadlock”,
where  every  thread  eventually  quits  computing  as  it  waits  for  results  from another  thread.  A second
common consequence is “livelock”, where one or more threads commandeer all of the computing resource
and effectively lock out the other portions. In each case, no further progress in the system is made. A third
common consequence  is  that  data  may be  corrupted  or  lack  currency  (timeliness).  A fourth  common
consequence  is  that  one  or  more  threads  detect  an  error  associated  with  the  protocol  and  terminate
prematurely, leaving the protocol in an unrecoverable state.

Concurrent  protocols  are  very  difficult  for  humans  to  correctly  design  and  implement.  Completely
synchronous protocols, such as defined by CSP, by Petri nets  or by the simple Ada rendezvous protocol
can be statically shown to be free from protocol errors such as deadlock and livelock, and considerable
progress has been made to verify that the complete system (data and concurrency protocols) is correct.
Simple asynchronous protocols that exclusively use concurrent threads and protected regions can also be
shown statically to have correct behaviour using model checking technologies, as shown by [LA 1999].
More complex and asynchronous protocols cannot be statically shown to have correct behaviours. 

When static  verification is  not  possible,  the  detection and recovery  from protocol  errors  is  necessary.
Watchdog timers (in hardware or in an extremely high priority thread), or threads that monitor progress can
be used to detect deadlock or livelock conditions and can be used to restart the system. Such recovery
techniques also constitute a protocol, but the extreme simplicity of a detection and recovery protocol can
usually be verified.

The potential damage from attacks on protocols depends upon the nature of the system using the protocol
and the protocol itself. Self-contained systems using private protocols can be disrupted, but it is highly
unlikely that predetermined executions (including arbitrary code execution) can be obtained. On the other
extreme threads communicating openly between systems using well-documented protocols can be disrupted
in any arbitrary fashion with effects such as the destruction of system resources (such as a database), The
generation of wrong but plausible data, or arbitrary code execution. In fact, many documented client-server
based attacks consist of some abuse of a protocol such as SQL transactions.

 5.6.4  Applicable Language Characteristics
The vulnerability is intended to be applicable to languages with the following characteristics:

1. Languages that support concurrency directly:

2. Languages that permit calls to operating system primitives to obtain concurrent behaviours.

3. Languages that permit IO or other interaction with external devices or services.

 5.6.5  Avoiding the Vulnerability or Mitigating its Effects
Software developers can avoid the vulnerability or mitigate its effects in the following ways.

 Synchronise access to shared resources.

 Use high level synchronisation paradigms, for example monitors, rendezvous, or critical regions. 

 Carefully design the architecture of the application to ensure that some threads or tasks never
block,  and  can  be  available  for  detection  of  concurrency  error  conditions  and  for  recovery
initiation;

 Use model checkers to model the concurrent behaviour of the complete application and check for
states where progress fails.Place all locks and releases in the same subprograms, and ensure that
the order of calls and releases of multiple locks are correct.

 Use techniques such as digital signing (effective use of encryption and hashing) to protect data
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being exchanged using open protocols.

 Implement simple detection and recovery protocols when verification of the complete protocol is
not possible.

 5.6.6  Implications for Standardization
In future standardisation activities, the following items should be considered: 

 Raise the level of abstraction for concurrency services.

 Provide services or mechanisms to detect and recover from protocol failures such as deadlock.

 Design concurrency services that help to avoid typical failures such as deadlock. 

 6  Conclusions and Future Work
This paper shows that it is possible to discuss the major concurrency-related vulnerabilities in a relatively
small  set  of  identifiable  vulnerabilities.  The  real  time  set  of  paradigms will  be  examined  to  produce
additional concurrency vulnerability descriptions as appropriate.

 Bibliography
[BW 2009] Burns A. and Wellings A.,  Language Vulnerabilities - Let’s not forget Concurrency,
IRTAW 14, 2009, ACM SIGAda Letters, Volume 30, Issue 1,   April 2009

[CAPEC]  Common  Attack   Pattern  Enumeration  and  Classification  database,  available  from
cve.mitre.org

[CVE] The Common Vulnerabilities and Exposure database, available from cve.mitre.org

[CWE] The Common Weakness Enumeration database, available from cve.mitre.org

[LA 1999]  [Lundqvist,  K  and  Asplund,  L.,  “A Formal  Model  of  a  Run-Time  Kernel  for
Ravenscar”, The 6th International Conference on Real-Time Computing Systems and Applications
– RTCSA 1999

[OWASP] The Open Web Application Security Project, available from www.owasp.org

[TR 24772:2010]  ISO IEC TR 24772  “Information  technology  --  Programming  languages  --
Guidance to avoiding vulnerabilities in programming languages through language selection and
use” , International Standards Organisation, 2010

[WG 23] ISO/IEC/JTC 1/SC 22/WG 23 Programming Language Vulnerabilities work products,
available from www.aitcnet.org/isai

(other references included in Section 5.x.3 for each vulnerability as support for individual vulnerability
discussions).

Ada Letters, April 2013 115 Volume XXXIII, Number 1



Adding Multiprocessor and Mode Change Support to the Ada Real-Time
Framework
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Abstract

Based on a previous proposal of an Ada 2005 framework of real-time utilities, this paper deals with the extension of that
framework to include support for multiprocessor platforms and multiple operating modes and mode changes. The design of
the proposed framework is also intended to be amenable to automatic code generation.

1. Introduction

One of the topics discussed at the 13th International Real-Time Ada Workshop was a proposal from Wellings and Burns
[17, 18] to develop a framework of real-time utilities. The aim of that proposal was to provide a set of high-level abstractions
to ease the development of real-time systems, taking advantage of facilities included in Ada 2005 such as timers and CPU
timing mechanisms, and the integration of object oriented and concurrent programming. These new facilities of Ada 2005
are low-level abstractions like setting a timer, synchronizing concurrent tasks, or passing data among them. They are indeed
adequate for a programming language, but not powerful enough themselves to abstract away much of the complexity of
modern, large real-time systems. These systems:

• are typically formed by components with different levels of criticality that need sharing the available computing re-
sources, e.g. by means of execution-time servers,

• perform activities subject to different release and scheduling mechanisms,

• require the management of timing faults if and when they occur at execution time,

• are increasingly being executed on multiprocessors,

• may execute in several modes of operation, characterized by performing different sets of activities under different
timing requirements.

The proposal from Wellings and Burns (hereafter the original framework) was a first step in the direction of implementing
an Ada 2005 library of real-time utilities. It addressed some of the features above, namely: the flexibility to choose the
activation pattern of a task; the possibility to implement deadline and overrun handlers; and the implementation of execution-
time servers. Other features were not covered but left as future work, as reported in [9].

∗This work is partly funded by the Vicerrectorado de Investigación of Universitat Politècnica de València under grant PAID-06-10-2397 and the Europan
Commission’s OVERSEE project (FP7-ICT-2009-4, Project ID 248333).
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This paper proposes extensions to the original framework in two aspects: (i) adapting the framework to multiprocessor
platforms and (ii) defining modes of operation and providing the mechanisms to enable mode changes.

The paper is organized as follows: section 2 defines the context by summarizing the main features of the original frame-
work. Section 3, and its subsections, enumerate the requirements we consider necessary for multiprocessor and multimode
applications, and our idea about the design process to develop an application based on the framework. Section 4 describes
the framework proposal. The flow of events and handlers under a deadline miss scenario is described in Section 5. Finally,
Section 6 gives our conclusions and points out pending issues.

2. Original Framework

The framework proposed in [17, 18] is explained in those publications and, to a larger extent, in chapter 16 of [6].
Therefore, only a brief overview of the original framework is given here. The main goal of the original framework is
to provide a reusable set of high-level abstractions for building real-time systems. These abstractions represent real-time,
concurrent activities. In the original proposal, they allow to define:

• the nature of the activation mechanism: periodic, sporadic or aperiodic,

• mechanisms to manage deadline misses and execution-time overruns at run time, and

• the possibility to limit the amount of CPU time devoted to tasks by means of execution-time servers.

Figure 1. Top-level packages of the original framework

The top-level packages of the original framework are depicted1 in figure 1. They give the support needed for implementing
different kinds of real-time tasks. In particular,

Real Time Tasks provides idioms to specify how tasks must respond to deadline misses and execution-time overruns.
Currently the package offers two types of tasks: a simple real-time task, not affected by these events, and a task type
that will execute a proper handler just before being aborted.

1Also in the top level of the original framework, a package called Execution Servers provides temporal firewalling mechanisms. This package is
not represented in figure 1 for simplicity, since the use of execution-time servers is not considered in this paper.
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Real Time Task State encapsulates the functionality of the task. It allows defining its deadline, execution time and
priority, and to implement procedures for the initialization, regular code, and handlers for both deadline miss and
overrun (the latter two are predefined as null procedures). Three child packages extend and specialize this common
interface to provide specific support for periodic, aperiodic and sporadic tasks.

Release Mechanisms is a synchronized interface from which task activation mechanisms are derived. The original
framework allows for activations with or without notification of events to the task (deadline miss and/or overrun).
Child packages are provided for periodic, aperiodic and sporadic release mechanisms. Figure 1 shows in more detail
the periodic release mechanism extension, implemented by means of the protected interface Periodic Release.
At the root of release mechanisms, an abstract procedure Wait For Next Release is provided. This procedure is
called by the task once per activation and is in charge of triggering the next release of the task at the proper time.

Since the detection and notification of relevant events is optional and orthogonal with respect to the kind of release
mechanism selected for a task, the original framework needs to provide four different classes per release mechanism
(2 nr of events × nr of release mechanisms). Namely, the original framework provides the following release mech-
anisms for periodic tasks: Periodic Release, Periodic Release With Deadline Miss, Periodic -
Release With Overrun, and Periodic Release With Deadline Miss And Overrun. Then the same
amount of variants for sporadic tasks. The implementation of multiprocessor scheduling approaches (see section 3.2)
requires an exponentially increased number of variants to cope with all the possible events to be handled. We consider
that this is an important drawback for extensions to the original framework.

We must point out that the original framework was not aimed at targeting multiprocessor platforms, nor was it prepared
to support modes and mode changes. Although we shall enumerate the requirements for these two cases in the next section,
we briefly note here that, in the original framework, jobs2 are not allowed to migrate through CPUs. We also note that, in the
original framework, any event such as a deadline miss or execution time overrun will cause the task to be aborted and execute
the corresponding handler. While this behavior may be appropriate for these two particular events, it is not flexible enough
to accommodate a number of mode change protocols [14, 13].

It is also important to remark that the class hierarchy of the original framework is not compatible with the use of a code
generator tool, as proposed here. For example, Listing 1 shows how the periodic release mechanism M and the real-time
task T have to be declared after the programmer defines and declares the final task state P. With this code structure, a code
generation tool can only set the scheduling attributes of a task in its Initialize procedure, and therefore it has to provide
a task-specific Periodic Task Statewith this procedure already implemented. When the programmer extends this new
task state to implement the task behavior, its initialization code would collide with the one that should be produced by the
code generator.

Listing 1. A simple example of a periodic task using the original framework

-- with and use clauses omitted
package Periodic_Test is
type My_State is new Periodic_Task_State with
record
I : Integer;

end record;

procedure Initialize(S: in out My_State);
procedure Code (S: in out My_State);

P : aliased My_State;
M : aliased Periodic_Release(P’Access);
T : Simple_Real_Time_Task(P’Access, M’Access, 3);

end Periodic_Test;

3. Framework requirements and system model

In the following subsections we enumerate the requirements we have considered to extend the original framework to
support efficient execution on multiprocessor platforms and to incorporate the concept of operating modes. We first describe

2The term job refers to a particular activation of a task. Note that this concept is not directly supported by the Ada language.
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Figure 2. Decomposition of a task with multiple job steps.

the design context we are assuming, and then list the particular requirements for multiprocessor and multimode support we
have considered. This set of requirements also serves the purpose of describing the system model we are assuming.

3.1. Design process requirements

The design and implementation of complex multiprocessor real-time systems requires using schedulability analysis tech-
niques to ensure the system will meet its timing requirements at execution time. From the results of this analysis, the
scheduling attributes are derived for each task in the system, across the different operating modes. The same applies to
ceiling priorities of resources shared by means of protected operations under the ceiling locking protocol. These scheduling
attributes may include multiple task priorities, relative deadlines, release offsets and task processor migrations at specified
times. Additionally, the programmer may want to handle some special events, like deadline misses, mode changes and execu-
tion time overruns. Translating manually this set of attributes into the application code is error-prone, since it implies dealing
with functional and non-functional properties at the same time in the code space. Hence this work proposes to use a specific
development tool that will generate the scheduling task behavior and initialization code on top of the new real-time frame-
work, leaving the purely functional behavior to the system programmer. However, the design and implementation of this tool
is still work in progress and cannot be presented until the framework proposal reaches a sufficient degree of consolidation
and agreement.

3.2. Multiprocessor requirements

A real-time system is composed of a set of tasks that concurrently collaborate to achieve a common goal. Each real-time
task can be viewed as an infinite sequence of job executions. In many cases, a job performs its work in a single step without
suspending itself during the execution. Therefore, a task is suspended only at the end of a job execution to wait for the next
activation event. However, some systems organize the code as a sequence of steps that can be temporally spaced to achieve a
given system goal. An example of such systems is the IMF model [3], oriented to control systems, where each job is divided
into three steps or parts: an Initial part for data sampling, a Mandatory part for algorithm computation and a Final part to
deliver actuation information. Although these steps usually share the job activation mechanism, different release offsets and
priorities can be used for each step in order to reduce the input/output jitter of the sampling and actuation steps.

These job steps constitute the code units where the programmer will implement the behavior of each task. However, as
pointed out in [18, 17], complex real-time systems could be composed by tasks that need to detect deadline misses, execution
time overruns, minimum inter-arrival violations, etc. The system behavior when these situations are detected is task-specific
and it has to be implemented in different code units in the form of task control handlers. An example of this task-specific
behavior is a real-time control task with optional parts. These optional steps would help to improve control performance in
case there is sufficient CPU time available, but they have to be cancelled if a deadline is in danger, in order to send the control
action in time.

For the purpose of timing analysis, the steps are usually regarded as subtasks [3, 10]. The subtasks share the same release
mechanism, typically periodic, and separate each job execution by a given release offset. Figure 2 shows the decomposition
of a control task following the IMF model. The rest of the scheduling attributes of these notional subtasks (e.g. priority, or
maximum CPU time allowed) are established according to a given goal, such as improving the overall control performance
by reducing input/output jitter.

When and where a given code unit is executed is determined by the scheduler of the underlying operating system. The
scheduler will use a set of scheduling attributes to determine which job is executed and, in multiprocessor platforms, on
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which CPU. Examples of scheduling attributes are: release offset of the steps relative to the job activation, job priority,
relative deadline, CPU affinity, worst-case execution time of the job, etc.

In a complex multiprocessor system, each job step can have a different set of scheduling attributes that could change during
its execution depending on the selected scheduling approach. Based on the ability of a task to migrate from one processor to
another, the scheduling approach can be:

Global scheduling: All tasks can be executed on any processor and after a preemption the current job can be resumed in a
different processor. If the scheduling decisions are performed online, in a multiprocessor platform with M CPUs, the
M active jobs with the highest priorities are the ones selected for execution. To ensure that online decisions will not
jeopardize the real-time constraints of the system, different off-line schedulability tests can be applied [4, 5]. When the
scheduling decisions are computed off-line, release times, preemption instants and processor affinities can be stored in
a static scheduling plan.

Job partitioning: Each job activation of a given task can be executed on a different processor, but a given job cannot
migrate during its execution. The processor where each job is executed can be decided by an online global dispatcher
upon the job activation, or it can be determined off-line by a scheduling analysis tool and stored in a processor plan for
each task. The job execution order on each processor is determined online by its own scheduler using the scheduling
attributes of each job.

Task partitioning: All job activations of a given task are executed in the same processor. No job migration is allowed. The
processor where a task is executed is part of the task’s scheduling attributes. As in the previous approach, the order in
which each job is executed on each processor is determined online by the scheduler of that processor.

Task splitting is a different technique that combines task partitioning with controlled task migration at specified times.
Under this approach, some authors suggest to perform the processor migration of the split task at a given time after each job
release [12] or when the job has performed a certain amount of execution [11]. It is worth noting that this approach normally
requires the information about the processor migration instant to be somehow coded into the task behavior.

We note that, from the different techniques and approaches enumerated so far in this section, global scheduling imposes
implementation requirements that need to be either fulfilled by the underlaying real-time operating system, or implemented at
user level by means of some kind of application-defined scheduler [1]. But the rest of approaches (task and job partitioning,
and task splitting) can be implemented by using features that are being considered for inclusion in Ada 2012. Some examples
have recently being proposed in [7, 2, 16]. In particular, tasks will impose the following requirements to the framework for
multiprocessor platforms:

• The ability to establish the tasks’ scheduling attributes, including the CPU where each job will be executed. These
scheduling attributes can be set at the task initialization phase to support task partitioning, but they can also be dynam-
ically changed at the beginning of each job activation to provide support for job partitioning, or after a given amount
of system or CPU time has elapsed, to provide support for task splitting techniques.

• The flexibility to program, and to be notified about, the occurrence of a wide set of runtime events. These events
include: deadline miss, execution time overrun, mode change, timed events driven by the system clock or CPU clock
to manage programed task migrations, etc. Some of these events may additionally require to terminate the current job.

• The possibility to specify time offsets in order to support the decomposition of tasks with multiple steps into several
subtasks.

3.3. Mode change requirements

Multimoded real-time systems differ from single-mode systems in that the set of tasks to schedule changes with time.
There exists one set of running tasks per mode of operation, each with the proper scheduling parameters (tasks periods,
deadlines, priorities, etc.) Operating modes are decided at design time to accommodate the different situations to be faced
during the system’s mission.

A mode change request is a request for tasks to either:

• change their scheduling attributes (priority, deadline, period, affinity, etc.) to those of the new mode, or
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• become active, if they were not active in the old mode, or

• become inactive, if they are not needed in the new mode, or

• preserve their scheduling attributes and activation pattern, if they remain unchanged from the old to the new mode.

When tasks share protected objects, it should also be possible to change the ceilings of those protected objects to ac-
commodate the requirements of the new mode. Since Ada 2005, it is possible to dynamically change ceiling priorities of
protected objects. Protocols for choosing the right time to change ceilings are proposed in [15]. Note that ceilings must be
changed from a priority that is not above the current ceiling, to avoid violation of the ceiling locking protocol. Hence we
cannot delegate the change of ceilings to a task with an arbitrarily high priority.

4. Framework proposal

Considering all the requirements described in Section 3, we propose now a redesign of the original framework. The
following subsections describe the components of this new proposal.

4.1. Real-Time Task State, Real-Time Task Scheduling and Real-Time Task Attributes

The state variables of all tasks will be spread in three task state objects, containing different types of information.

Task State Derives from the interface Task State Interface. It contains the task code in the form of four abstract or null
procedures:

• Initialize: abstract procedure that must contain the user initialization code for the task;

• Code: abstract procedure that contains the task’s functional code, to be executed at each new release of the task;

• Deadline Miss: a null procedure to be redefined if the task needs to implement a deadline miss handler;

• Overrun: similarly to Deadline Miss, this is the place to implement the execution-time overrun handler.

Task Sched This type offers the following operations:

• Initialize. This is the abstract procedure where the user is required to set up the task’s scheduling attributes
(priority, deadline, period, CPU), define the events to be handled for that task and connect those events with their
corresponding event handlers (deadline miss and overrun).

• Set Task Attributes. This procedure is defined as null in the Task Sched type. It may be overriden by a not null
procedure in order to reset the task attributes to the task’s original values for the current operating mode. It is
useful after a task split, or as the last action of a job when implementing job partitioning.

• Adjust Job Attributes. This procedure (null by default) is intended to dynamically change the current job at-
tributes, for example for job migration or for supporting a dual priority scheme.

• Mode Change Handler. This is the user’s handler for mode changes. A mode change may be handled in part by
user’s code, at the user’s old-mode priority. This will, for example, allow the proper task to safely change the
ceiling priorities to the new-mode values. This is also an appropriate place for the application code to perform
device initialization for the new mode, if needed.

Task Sched Attributes This type offers the setter and getter subprograms for the individual task scheduling attributes,
namely the execution time, relative deadline, priority, and offset. It also offers setters and getters for handling the
active flag associated to each task. This flag informs the system about whether a task is currently running or waiting
for activation.
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4.2. Control Mechanisms

Adapting the original framework to support multiprocessor platforms and mode changes requires the framework to handle
some new events. We propose to detach the event management from the release mechanisms, as proposed in the original
framework. Hence the proposal of a new control mechanism abstraction.

A control mechanism is formed by a Control Object and a Control Event, that collaborate to implement the Command
design pattern [8]. Control Objects will perform the Invoker role, that will ask to execute the Command implemented by the
Control Event when some scheduling event occurs. The Receiver role is played by Task State or Task Sched types, while the
Client role is performed by the initialization code that creates the event command and configures its receiver. Control objects
allow triggering events at different times of the task’s lifespan:

• On job release: This is useful, for example, to reset the deadline of a task scheduled under a deadline-based policy,
such as EDF.

• After a given amount of system time: The use of Timing Event allows, for example, to implement task splitting based
on system time. The command executed by the control event will invoke the Adjust Job Attributes procedure of the
Task Sched object. Another example is to trigger the execution of a deadline miss handler.

• After a given amount of CPU time: Task splitting based on CPU time will use an execution time timer to trigger the
appropriate event. Triggering a cost overrun handler is another example of an event controlled by a CPU timer.

• On job completion: Handling an event at the time of completion of a job allows to handle events whose handling must
be deferred until the job completes its execution. This type of handler may change the task attributes before the next
job activation occurs, e.g., the Mode Change Handler procedure could be used to change the priority and period of a
task before reprogramming its next release event.

Each control object is complemented with a Control Event. A control event only needs now to execute the designated
event handler, provided either by the Task State or the Task Sched object, depending on the particular event to be handled
(deadline miss, mode change, etc.). There are three classes of events: immediate, abortive and deferred, depending on
when they will be handled. Immediate events are immediately dispatched when they are triggered. This is useful e.g. for
implementing task splitting or dual priority. Abortive events may abort the execution of the task’s code. Examples of use
are deadline miss and cost overrun events. Finally, deferred events are handled only when the task is not running (in other
words,when the task is waiting for the next release). This behaviour is adequate for handling mode changes because it lets
the last old-mode job of the task to complete before adjusting the task parameters for the new mode.

4.3. Release Mechanisms

Release mechanisms are the abstractions used to enforce task activation at the proper times. We propose to use two kinds
of release mechanisms:

• Release Mechanism, as in the original framework but with some minor changes to support CPU affinities and release
offsets. Specializations of this basic mechanism implement the periodic, sporadic and aperiodic release patterns.

• Release Mechanism With Control Object, almost identical to the former but invoking On Release and On Completion
procedures of all registered control objects each time a job is released or completed. It also offers the notification op-
erations Notify Event, Pending Event and Trigger Event to add event management support. Listing 2 shows part
of the specification and body of Periodic Release With Control Objects. The code for event handling procedures is
shown separately in listing 3. As suggested in [16], the new Set Next CPU procedures of Timing Event and Dispatch-
ing Domains are used to avoid unnecessary context switches when a job finishes its execution in a different CPU than
the next job release is going to use, e.g, due to the application of a job partitioning or task splitting scheme (see lines
38 and 62).
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4.4. Task Templates

There are three types of tasks defined in the framework. One is the Simple Real Time Task, that must be attached to a
simple release mechanism (one with no control object associated) and whose body implements just an infinite loop with two
sentences: a call to Wait For Next Release and an invocation to the Code procedure defined in the task state. Not being
attached to any control object, this type of task is insensitive to events other than its own releasing event.

The second type of task, shown in Listing 4, is the Real Time Task With Event Termination. This type of task must be
attached to a release mechanism with control object, and its body is more complex. During the time the task is waiting for its
next release, it may be notified of a pending event (line 16) and handle it (line 17), going back to wait for the next release. In
the absence of an event during the wait for the next release, the task enters an asynchronous transfer of control (ATC, a select
then abort statement) where the task’s code may be aborted in the event of a deadline miss or execution time overrun.

A third type of task is provided (Real Time Task With Deferred Actions) that differs from tasks with event termination
in that the task’s code is never aborted. This is the type to use for tasks whose last job in a mode must not be aborted when a
mode change request arrives.

Listing 2. Periodic Release Mechanism with Control Objects
1 -- spec
2 protected type Periodic_Release_With_Control_Objects
3 (A: Any_Periodic_Task_Attributes; NoC: Natural) is new Release_Mechanism_With_Control_Object with
4 entry Wait_For_Next_Release;
5 entry Notify_Event(E: out Any_Event);
6 entry Pending_Event(E: out Any_Event);
7 procedure Trigger_Event(E: in Any_Event);
8 procedure Set_Control(I: in Natural; C: in Any_Control_Interface);
9 procedure Cancel_Control(I: in Natural);

10 pragma Priority(System.Priority’Last);
11 private
12 entry Dispatch_Event(Postponed_Events)(E: out Any_Event);
13 procedure Release(TE: in out Timing_Event);
14 -- internal variables omitted
15 end Periodic_Release_With_Control_Objects;
16

17 -- body
18

19 protected body Periodic_Release_With_Control_Objects is
20

21 entry Wait_For_Next_Release when New_Release or not Completed is
22 Cancelled: Boolean;
23 begin
24 if First then -- Release mechanism initialization
25 New_Release := False;
26

27 -- Initialize control objects
28 for I in 1 .. NoC loop
29 if Control_Objects(I) /= null then
30 Control_Objects(I).Initialize(Tid);
31 end if;
32 end loop;
33 if A.Task_Is_Active then
34 First := False;
35 Epoch_Support.Epoch.Get_Start_Time (Next);
36 Tid := Periodic_Release_With_Control_Objects.Wait_For_Next_Release’Caller;
37 Next_Release := Next + A.Get_Offset;
38 Event.Set_Next_CPU (A.Get_CPU);
39 Event.Set_Handler (Next_Release, Release’Access);
40 end if;
41 requeue Periodic_Release_With_Control_Objects.Wait_For_Next_Release;
42 elsif New_Release then -- Job release
43 New_Release := False;
44 Completed := False;
45 -- On release control objects
46 for I in 1 .. NoC loop
47 if Control_Objects(I) /= null then
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48 Control_Objects(I).On_Release(Next_Release);
49 end if;
50 end loop;
51 else -- Job completed or aborted
52 Completed := True;
53 for I in 1 .. NoC loop -- On completion control objects
54 if Control_Objects(I) /= null then
55 Control_Objects(I).On_Completion;
56 end if;
57 end loop;
58 if A.Task_Is_Active then
59 Next := Next + A.Get_Period;
60 Next_Release := Next + A.Get_Offset;
61 Event.Set_Next_CPU (A.Get_CPU);
62 Event.Set_Handler (Next_Release, Release’Access);
63 else
64 First := True;
65 Event.Cancel_Handler (Cancelled);
66 end if;
67 requeue Periodic_Release_With_Control_Objects.Wait_For_Next_Release;
68 end if;
69 end Wait_For_Next_Release;
70 ...
71 -- private
72

73 procedure Release (TE : in out Timing_Event) is
74 begin
75 New_Release := True;
76 end Release;
77

78 end Periodic_Release_With_Control_Objects;

Listing 3. Code of event handling subprograms
1 entry Notify_Event(E: out Any_Event) when Event_Occurred(Abortive) is
2 begin
3 requeue Dispatch_Event(Abortive);
4 end Notify_Event;
5

6 entry Pending_Event(E: out Any_Event) when Event_Occurred(Deferred) or Event_Occurred(Abortive) is
7 begin
8 if Event_Occurred(Abortive) then
9 requeue Dispatch_Event(Abortive);

10 else
11 requeue Dispatch_Event(Deferred);
12 end if;
13 end Pending_Event;
14

15 entry Dispatch_Event(for T in Postponed_Events)(E: out Any_Event) when True is
16 begin
17 E := Task_Event(T);
18 Event_Occurred(T) := False;
19 Completed := False; -- In case of abortion during WFNR
20 end Dispatch_Event;
21

22 procedure Trigger_Event(E: in Any_Event) is
23 ED : Event_Dispatching := E.Get_Event_Dispatching;
24 begin
25 case ED is
26 when Immediate =>
27 E.Dispatch;
28 when Postponed_Events =>
29 Task_Event(ED) := E;
30 Event_Occurred(ED) := True;
31 end case;
32 end Trigger_Event;
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Listing 4. Task template for real-time tasks with event termination
1 --spec
2 task type Real_Time_Task_With_Event_Termination (State: Any_Task_State_Interface;
3 Sched: Any_Task_Sched_Interface;
4 R: Any_Release_Mechanism_With_Control_Objects) is
5 end Real_Time_Task_With_Event_Termination;
6

7 --body
8 task body Real_Time_Task_With_Event_Termination is
9 E : Any_Event;

10 Released: Boolean;
11 begin
12 Sched.Initialize(State);
13 State.Initialize;
14 loop
15 select
16 R.Pending_Event(E);
17 E.Dispatch;
18 Released := False;
19 then abort
20 R.Wait_For_Next_Release;
21 Released := True;
22 end select;
23 if Released then
24 select
25 R.Notify_Event(E);
26 E.Dispatch;
27 then abort
28 State.Code;
29 end select;
30 end if;
31 end loop;
32 end Real_Time_Task_With_Event_Termination;

5. Propagation and handling of events: deadline miss example

Figure 3 shows the flow of events and actions under a deadline miss scenario. The framework entities involved in the
process of handling the event (Task State, Task Sched, release mechanism, control object, timing event and control event)
are shown in white-background rectangles. Vertical thin rectangles represent code executed in those entities. Everything
starts on the top left corner of figure 3, when the Real Time Task starts and executes Initialize.

• During the task initialization, Task Sched registers the control object DM CO (of type Control Object With System Clock)
with the task’s release mechanism RM. The second call to Initialize refers to the initialization required by the task’s
logic, fully dependent on the application. In other words, this is user’s code and not code related to any scheduling
parameters of the task.

• Before the end of Wait For Next Release, the On Release procedure of the task’s release mechanism RM is called.
Within that procedure, the control object DM CO programs a Timing Event with the task’s deadline before the task
begins its execution.

• The task then enters the ATC with a call to Notify Event, in the select part of the ATC, and an abortable call to
State.Code. During the execution of State.Code, a deadline miss occurs (at the point marked as Deadline timeout,
in figure 3) and the timing event executes the Event Handler. The Event Handler then triggers the event (via Trig-
ger Event) to the release mechanism, informing of the type of event (Deadline Miss Event).

• Since this is an abortive event, the barrier of Notify Event becomes open, which aborts the call to State.Code and
executes E.Disptach, which in turns ends up invoking the task’s selected handler Task State.Deadline Miss.

The end of the loop makes the task go back to queue in Wait For Next Release and the cycle starts over again.
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Figure 3. Control flow for a deadline miss scenario

6. Conclusions

This paper has given account of the main design principles for a new (actually a redesigned) framework of real-time
utilities. Our goals were (i) to make the framework amenable to automatic code generation tools; (ii) to adapt the framework
to support execution on multiprocessor platforms; and (iii) to incorporate the mechanisms to deal with modes and mode
changes.

The use of control objects and the associated control events, and the range of possibilities of event handling (immediate,
abortive, deferred), have contributed to the scalability of the framework with respect to the number of types of events to
handle. There’s no need anymore to implement an exponential number of different task patterns depending on the number of
events and release mechanisms. Furthermore, the new design allows to handle events at different times during the lifespan of
a job (on release, on completion, or after a certain amount of system or CPU time), which is useful for implementing different
multiprocessor techniques (such as task splitting, or other ad hoc techniques) and mode changes.

We note however that this is work in progress and the proposal is not fully complete3. We need to complete the design
with a mode manager (to receive mode change requests and redirect mode change events to all tasks) and we definitely need
more testing and discussion around the proposed design.
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Abstract

Virtualization techniques have received increased at-
tention in the field of embedded real-time systems. Such
techniques provide a set of virtual machines that run on
a single hardware platform, thus allowing several appli-
cation programs to be executed as though they were run-
ning on separate machines, with isolated memory spaces
and a fraction of the real processor time available to
each of them.

This papers deals with some problems that arise
when implementing real-time systems written in Ada on
a virtual machine. The effects of virtualization on the
performance of the Ada real-time services are analysed,
and requirements for the virtualization layer are de-
rived. Virtual-machine time services are also defined
in order to properly support Ada real-time applications.
The implementation of the ORK+ kernel on the XtratuM
supervisor is used as an example.

1. Introduction

Virtualization techniques have raised significant in-
terest in the embedded systems area. Virtualization en-
ables a single hardware platform to be divided into a
number of virtual machines, each of them providing a
set of virtual resources that are mapped into the available
physical resources. In this way, each virtual machine
provides a partition for executing programs using a frac-
tion of the physical processor time, memory capacity,
and other devices. Since each partition is based on a vir-
tual machine with a set of virtual devices, although with
only a fraction of the capacity of the physical machine,
it can host any kind of software organization, includ-
ing different kinds operating systems or run-time kernels
(figure 1).

Virtualization can provide temporal and spatial sep-
aration between partitions. Temporal separation means

∗This work has been partially funded by MICINN, project
TIN2008-06766-C03-01 RT-MODEL.

that each partition is guaranteed to have a fraction of the
physical processor time, and no other partition can steal
processor time from it. Spatial separation means that
each partition is allocated a fraction of the global phys-
ical memory space in such a way that no other partition
can access any part of it. In this way, applications run-
ning in different partitions are isolated from each other,
and errors occurring in one of them cannot propagate to
the others.

Virtualization has significant advantages for building
complex embedded systems with high-integrity require-
ments, especially when there are subsystems with dif-
ferent levels of integrity. Isolation provides fault con-
tainment, and also simplifies the validation and verifi-
cation process for high-integrity applications coexisting
with lower integrity ones. It also enables more effi-
cient fault detection and management techniques, and
a better adaptation to the different system views that are
commonplace in modern development methods. How-
ever, virtualization also creates new challenges, espe-
cially when real-time behaviour is considered. In addi-
tion to introducing some degree of execution-time over-
head, multiplexing processor time among different par-
titions may undermine the temporal predictability of the
applications. Both the implementation of the virtualiza-
tion software layer and the application itself must be
done in such a way that care is taken in order to keep
temporal predictability, and to ensure that real-time ap-
plications running on virtual machines can be analysed
for temporal correctness.

virtualization layer!

OS!

hardware!

applications!

RTS / kernel!

embedded!
application!

RTS / kernel!

embedded!
application!

virtual 
machine 
interface!

partition 1! partition 3!partition 2!
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Figure 1. Virtualization and partitions.
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In the rest of the paper we analyse the effects of vir-
tualization on real-time programs using the services de-
fined in the Ada real-time annex [4, annex D]. Proposed
Ada 2012 modifications are also discussed. Section 2
contains an overview of virtualization technology, with
focus on bare machine supervisors. Ada real-time ser-
vices are summarized in section 3, and the implications
of implementing them on a virtual machine are analysed.
Section 4 discusses the support needed from the virtu-
alization layer in order to properly implement the An-
nex D real-time services. Finally, section 5 summarizes
the porting of the ORK+ kernel to the XtratuM hyper-
visor as a case study. Conclusions and hints for future
work are presented in section 6.

2. Overview of virtualization technology

2.1. Hypervisors

There are different approaches to virtualization, but
not all of them are equally suitable for real-time systems,
mostly for efficiency reasons. It is generally accepted
that the best approach for embedded systems is based on
the use of a hypervisor or virtual machine monitor [13].
A hypervisor is a layer of software that provides an ex-
ecution environment in which several programs, includ-
ing operating systems, can run in the same way as if they
were executed on the real hardware. Type 1 or bare-
metal hypervisors run directly on the physical hardware,
usually in supervisor mode, whereas type 2 or hosted
hypervisors run on top of an operating system. In or-
der to get a predictable, efficient real-time behaviour, a
bare-metal hypervisor is generally thought to be a better
choice.

Hypervisors can work in two ways. When full vir-
tualization is provided, the virtual machine interface is
identical to the physical processor, and the code running
in the partitions does not have to be modified. This re-
quires hardware support which is not available on most
embedded processors. Paravirtualization [6], on the
other hand, is a technique in which the virtual machine
is similar, but not identical, to the physical machine.
This means that most machine instructions are executed
on the real processor, but privileged instructions are re-
placed by system calls to the hypervisor. This technique
requires changes in the guest operating system, but not
in the application code.

2.2. Scheduling

In order to allow for real-time partitions to exhibit
a predictable behaviour, as well as to ensure temporal
isolation, processor time has to be multiplexed among
the various partitions in a predictable way. A two-level

hierarchical scheduling scheme is often used, where a
global scheduler allocates processor time to partitions,
and a local scheduler is used within each partition to
choose a process or thread to run when the partition is
active.

Different kinds of global and local scheduling poli-
cies can be used [12]. In the rest of the paper a static
global scheduling policy is assumed, as specified in the
ARINC 653 standard [3] and implemented in the current
version of the XtratuM hypervisor [7]. The Ada real-
time scheduling policies will be used at the local level
for partitions running real-time Ada applications.

2.3. Interrupt management

One of the key elements of virtualization is interrupt
management. Interrupts are handled by the virtualiza-
tion layer, and virtual interrupts are dispatched to parti-
tions in a similar way as conventional operating systems
dispatch hardware events to processes (figure 2).

Interrupt

handler

handler

Virtual interrupt

Interrupt

Virtualization layer

Partitions

Hardware

Real time

Figure 2. Immediate event notification.

It should be noticed that in this context the notifica-
tion of events to the target partition may be delayed if
the partition is inactive. In this case, the delivery of the
virtual interrupt is delayed until the partition is active
(figure 3).

Interrupt
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Partition
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Interrupt
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Figure 3. Delayed event notification.

It goes without saying that the dispatching of virtual
interrupts has a direct impact on the performance of the
real-time services provided by Ada partitions.

2.4. Virtualization interface

Hypervisors provide a virtualization interface that the
guest operating systems or real-time kernels running in
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partitions can use to replace the execution of privileged
machine instructions. This interface usually takes the
form of a set of system calls or hypercalls. Hypercalls
give access to the hypervisor basic services: support
for context switch, real-time clocks and timers, inter-
rupt support, inter-partition communication, etc. In this
way, the guest operating system can run in user mode,
whereas the hypervisor is the only part of software run-
ning in supervisor mode.

In order to run Ada programs on a partition, the Ada
run-time system has to be para-virtualized, i.e. it has
to be modified so that the virtual hardware resources
provided by hypercalls are used instead of the physical
hardware.

3. Ada real-time services

3.1. Review of Ada real-time services

The Ada 2005 real-time services are specified in
Appendix D of the ARM [4]. These services can be
grouped into the following categories:

• Scheduling: priorities, dispatching policies, ceiling
locking policy.

• Real time: real-time clock, delay until and timing
events.

• Execution time: execution-time clocks and timers,
group budgets.

The standard also defines the Ravenscar profile as a
set of restrictions on tasking, including some restrictions
on the above services.

The current Ada 2012 proposal [2] includes some ad-
ditions and modifications, which can be summarized as
follows:

• Support for multiple processors (AI05-0171-1);
synchronous barriers (AI05-0174-1); group bud-
gets for multiprocessors (AI05-0169-1); Ravenscar
profile for multiprocessors (AI05-171-1).

The analysis in this paper is restricted to monopro-
cessors, and therefore these real-time mechanisms
will not be discussed.

• Improvements on real-time language features:

– Scheduling: Yield for non-pre-emptive dis-
patching (AI-0166-1).

– Execution time: monitoring the time spent in
interrupt handlers (AI05-0170-1)

– Fix for Ceiling Locking with EDF (AI-055-
1).

– Extended suspension objects, usable with
EDF (AI05-0168-1)

There are also some other minor fixes which will not
be discussed here.

3.2. Impact of virtualization on Ada real-time
services

Running Ada real-time programs on top of a virtu-
alization layer raises some problems, which are derived
from the differences between the virtual machine and the
underlying physical machine. The various issues related
to virtualization are discussed in the next paragraphs.

Scheduling. As explained in section 2 above, a two-
level scheduling scheme is assumed. In order to
be able to ensure the real-time behaviour of the
applications, a global scheduling method with a
predictable, bounded temporal behaviour must be
used. Static cyclic scheduling, as specified by AR-
INC 653, provides such kind of behaviour and is
thus a possible choice. More flexible approaches
are also possible (see e.g. [12]).

The local scheduler is used to determine which task
is dispatched to run in a partition. For a parti-
tion running an Ada program, any of the task dis-
patching policies defined in the real-time annex can
be used. However, the implementation of context
switches at the lowest level of the real-time kernel
has to be modified as privileged instructions have to
be replaced by hypervisor calls. This will generally
result in longer context switch times.

A final remark is that the local scheduler can only
dispatch a task for execution when the partition is
active, which may significantly delay the response
time of real-time tasks, as discussed in section 3.3
below.

Real-time clock, delays and timing events. The im-
plementation of these services relies heavily on the
underlying hardware [14], and therefore has to be
modified when running on a virtual machine. In
this case the physical hardware timers are handled
by the hypervisor, and partition code has only
access to them through hypervisor calls providing
clock readings and virtual timers. Both virtual
machine clocks and virtual interval timers refer to
physical real-time, but virtual timer interrupts may
be delayed if the timer expires when the partition
is not active (see figure 3). As a result, tasks may
suffer significant activation jitter, which has to be
taken into account for temporal analysis.
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Execution-time clocks and timers. CPU time is kept
on physical processors by updating a per-task
execution-time counter on every context switch ac-
cording to the real-time clock value [14]. How-
ever, this implementation cannot be used when run-
ning on a virtual machine, as the time intervals dur-
ing which the partition is not active should not be
counted. Therefore, the execution-time clocks of
all the tasks in a partition have to be stopped when
the partition becomes inactive, and restarted when
the partition becomes active again. This requires
some support from the hypervisor. The best solu-
tion is to implement partition-time clocks in the hy-
pervisor, on top of which the local real-time kernel
can base the per-task execution-time clocks.

Monitoring the time spent in interrupt handlers.
The way in which the execution time of interrupt
handlers is kept is implementation-defined. A
simple and legal implementation is to charge the
time consumed by the interrupt handlers to the
task that is running when the interrupt is gener-
ated. However, the Ada 2012 proposal allows an
implementation to separately account for interrupt
handling time. This case is considerably more
complex, and for the moment this option is not
recommended.

It should be noted that the execution time clock of
any task can be charged with the execution time of
any virtual interrupt delivered by the hypervisor to
the partition, or even with the time spent in han-
dling interrupts not related to the same partition.
This may result in high inaccuracies in execution
time measurement for any task, especially when
there are non-real-time partitions with interrupts
occurring at unpredictable times and unknown han-
dling times.

Ravenscar profile. The Ravenscar profile is not af-
fected by virtualization, except that the real-time
behaviour of tasks may change due to the effects of
running on a virtual machine.

3.3. Response-time analysis

Response time analysis for systems with hierarchi-
cal schedulers has been discussed by Almeida and
Pereira [1], Davis and Burns [8], Pulido et al. [12], and
Balbastre et al. [5], among others. Depending on the ex-
act global and local scheduling methods that are used in
a given system, a choice of techniques can be applied
with various levels of accuracy. In any case, context
switch and interrupt handling overheads, as well as other
effects of virtualization on the temporal behaviour of the
system, must be accounted for.

4. Required virtualization support

In this section we summarize the main features that
the hypervisor implementing the virtualization layer
must provide in order to support the execution of Ada
real-time programs on one or more partitions, according
to the discussion in section 3 above.

First of all, since we are assuming a paravirtualiza-
tion approach, the hypervisor must provide hypercalls to
replace all privileged instructions for the real processor
architecture. This includes access to privileged registers,
input/output instructions, interrupt support, and memory
management, as well as any other processor-specific re-
sources.

Real-time clocks and timers are basic resources for
implementing the Ada real-time clock, delays and tim-
ing events. The hypervisor must provide a monotonic
real-time clock base, and some timer mechanism based
on it. Such basic mechanisms must be accessible by
means of hypercalls, so that the Ada run-time system
can use them to implement the Ada higher-level mecha-
nisms.

Implementing execution-time clocks and timers re-
quires a time base that only advances when a partition
is active. The most efficient way to get it is that the hy-
pervisor implements per-partition execution time clocks
that measure the time spent in running each partition.
Partition-time timers based on such clocks should also
be implemented, and access to all of these mechanisms
should be provided through appropriate hypercalls, as
before.

If partition-time clocks are not provided at the hyper-
call level, the Ada run-time system must build an equiv-
alent service based on lower-lever services provided by
the hypervisor. For example, the hypervisor might de-
liver a virtual interrupt to a partition whenever it is ac-
tivated. If the global scheduler is a static cyclic execu-
tive, knowledge of the minor and major cycle durations
could then be used to compute the duration of the in-
terval during which the partition is inactive. The Ada
run-time system could then adjust a locally maintained
partition-time clock by subtracting the duration of the
inactive interval from the elapsed time.

Execution-time spent in interrupt handlers raises ad-
ditional problems. The Ada run-time system can ac-
count for the time spent in virtual interrupt handlers that
run in the partition, but not for the time used by lower-
level interrupt handlers within the hypervisor. In order
not to charge it to the active partition, the hypervisor
should stop the partition-time clock during the execution
of the interrupt handler. If there is no partition clock at
the hypervisor level, the only possibility to prevent inter-
rupt handling time from being erroneously attributed to
the running task would be to notify the occurrence and
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duration of interrupt handlers in such a way that the Ada
run-time system could adjust its local partition clock.

Monitoring the time spent in interrupt handlers is
even harder. At the lower level, partitions can be pre-
empted by interrupts generated by timers or input/out-
put services requested by other partitions. Moreover,
some interrupts may be delivered to several partitions,
e.g. those generated by hardware timers supporting tim-
ing events or delays. The only way time spent in in-
terrupt handlers can be properly accounted for is to im-
plement interrupt clocks within the hypervisor. To our
knowledge this is not done by any current hypervisor
implementation.

5. Case study

XtratuM [11] is an open-source bare-metal hyper-
visor for real-time embedded systems. It implements
most of the above requirements, with the only excep-
tion of interrupt-time clocks. The global scheduler is
a cyclic executive based on the ARINC 653 specifi-
cation, supporting a variety of local operating systems
at the partition level. We have ported the ORK+ ker-
nel [14] to XtratuM using paravirtualization techniques
on a LEON2 platform [10], an implementation of the
SPARC V8 architecture. The ORK+/XtratuM kernel
acts a guest partition operating system, on top of which
a Ravenscar Ada application can run (figure 4).

XtratuM!

ORK+!

LEON2 hardware!

Ravenscar!
Ada  

application!

RTS / kernel!

other!
applications!

OS!

other!
applications!

partition 1! partition 3!partition 2!

hypercall interface!

Figure 4. ORK+/XtratuM architecture.

The work is described in detail in another paper [9].
Paravirtualizing the kernel included adding a new Ada
package for the hypercall interface, and modifying four
more packages in order to replace privileged operations
by XtratuM hypercalls. Overall, 1398 out of 7316 lines
of code had to be modified, including the interface pack-
age and some low-level routines written in assembly lan-
guage.

Evaluation experiments showed a low impact of vir-
tualization on system performance. Although the to-
tal overhead for activating periodic tasks was found to
be about 5 times the value for the original ORK+ run-

ning on a bare LEON2, the overall performance losses
were found to be negligible for tasks with periods above
10 ms.

6. Conclusions and future work

The implementation of Ada real-time systems on vir-
tual platforms has been analysed in the paper. The kind
of virtualization kernel that has been taken as a refer-
ence is a bare-metal hypervisor with paravirtualization.
Such kind of platform requires the Ada run-time sys-
tem and the underlying real-time kernel to be modified
so that it can run in user mode and access to physical
devices is replaced by hypercalls giving access to vir-
tual devices. The issues involved in such modifications
have been analysed, and some requirements for the vir-
tualization kernel have been derived. The approach has
been applied to porting the ORK+ kernel to the XtratuM
hypervisor. The porting has required only a moderate
amount of effort and has given reasonable results in per-
formance tests.

Planned future work includes doing a pilot imple-
mentation of interrupt time clocks on ORK+/XtratuM,
and study more in depth the implications of virtualiza-
tion on schedulability analysis. Another promising line
is extending real-time virtualization concepts to multi-
core processor platforms.
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Session Summary: Multiprocessor Issues, Part 1

Chair: Jorge Real
Rapporteur: José F. Ruiz

1 Introduction

The topic of multiprocessors was addressed by quite a number of position papers this year, so the whole first
day of the IRTAW 15 workshop, while we were all fresh, was allocated to discussing multiprocessor issues.
There was a discussion about dispatching domains and multiprocessor architectures during the morning,
focusing on resource control protocols in the afternoon.

This summary addresses the morning session, whose goals were to review and evaluate the Ada 2012
support for multiprocessors, and think about possible additions to future (post 2012) language revisions.
Specific issues discussed in this session were:

• The current definition of dispatching domains

• Per dispatching domain scheduling policies

• Dynamic dispatching domains

• Support for very large number of cores

• Non-SMP architectures

• Deferred attributes

The following sections will provide the details of the discussions around these subjects.

2 Dispatching domains in Ada 2012

Ada 2012 support for task affinities is provided by dispatching domains (Ada 2012 RM D.16.1), and there are
already reference implementations [6] indicating that the current definition is appropriate and implementable
on top of operating systems and kernels.

These early implementations showed an editorial error in the current definition of package System.-
Multiprocessors.Dispatching Domains, which is intended to be Preelaborate, but it cannot be so because it
depends on package Ada.Real Time which is not Preelaborate. Alan Burns volunteered to submit this minor
correction to ARG.

The definition of the System Dispatching Domain was found slightly misleading, because it is defined
as constant (although it is implicitly modified by the creation of other dispatching domains), and it is not
always a contiguous range as the other dispatching domains. Hence, for the System Dispatching Domain,
Get First CPU and Get Last CPU do not make much sense, and Assign Task cannot be used. However,
these minor annoyances could probably be addressed better in the Rationale than by changes in the Reference
Manual.

3 Dispatching domain’s scheduling policy

The position paper submitted by Alan Burns and Andy Wellings [2] to last IRTAW 14 advocated for a
more flexible definition of dispatching domains, where one could assign specific scheduling policies to each
dispatching domains.
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The discussion around this feature showed that this behavior can be achieved by carefully using the
existing support for dispatching domains; if the priority range is partitioned into non-overlapping priority
bands, each of these bands to be used only by tasks allocated to the same dispatching domain, we can set
specific dispatching policies for the different ranges of priorities (and hence for each dispatching domain).

Therefore, there was not a strong motivation for trying to push forward this feature.

4 Dynamic dispatching domains

Ada 2012 defines dispatching domains as static entities. Therefore, mode changes involving migration of
CPUs from one dispatching domain to another cannot be implemented. Reconfiguring dispatching domains
when the underlying hardware changes (CPUs being added or removed to/from an Ada partition) is not
supported either.

It would be interesting to support dynamic dispatching domains to address these situations. Note that
the current Ada 2012 model assumes that the set of processors available to an Ada partition remains constant
for its whole lifetime, so addressing changes to the hardware is outside the intention in the language. Still,
the existing static support is not flexible enough for some kinds of mode changes which would be desirable.

The position papers discussed in the workshop did not address this functionality, so after discussing
for a while its implications it was decided to encourage the submission of concrete proposals for the next
workshop, motivating the need and detailing its design.

5 Very large number of cores

Lúıs Miguel Pinho started this discussion by stating that Ada is not fit for a large number of cores and we
should start thinking about how to address this limitation. Tasks and protected objects are too heavyweight,
in terms of time to create and destroy, context switch, synchronization protocol, etc.

When there are many CPUs available, what would be desirable is to have the notion of “parallel” activity,
which could be functions (without side effects), blocks, loops, or others.

This notion of user-level fine-grained parallelism is already present in many programming languages and
libraries. In ParaSail [8], language semantics are parallel by default, and subprograms, loops, statements
and some other elements can be executed in parallel. Intel’s Cilk [1] extends the C language with primitives
to express parallelism, and the Cilk run-time system maps the expressed parallelism into a parallel execution
framework. Cilk provides keywords to indicate how subprograms can be executed in parallel. Hence, there
exist today different languages, libraries and APIs to express parallelism in a program. The field of automatic
parallelization by compilers or tools has not yet been proved as very efficient, leaving user-level description
of parallelism as the only means to achieve highly parallel applications effectively.

Therefore, the workshop identified this topic as a relevant one. Ada has been prominent in treating
concurrent units (tasks) as first-class citizens in the language, and it would be good to address better
support for parallelism. The submission of proposals about this subject is strongly encouraged for the next
workshop.

6 Non-SMP architectures

Ada 2012 support for multiprocessor architectures focuses on Symmetric MultiProcessor (SMP) architectures,
where all processors are identical and access to main memory is uniform (caching aside). In the Ada model
a partition is a single address space.

At the last IRTAW 14 workshop there was a position paper by Andy Wellings et al. [9] addressing the
difficulties to handle this kind of hardware architectures. The main issues explained there:

• Understanding the address map. The first requirement is to be able to represent the platform. The
goal is to include the notion of locality and distance (in number of hops) of a processor from a memory
bank servicing a particular address, so that tasks can allocate the objects they use in a “close” location.
It would require to add the concepts of memory bank and distance to Ada. Looking at standard ways
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to describe memory topologies, it was suggested to look at Portable Hardware Locality (hwloc) [4],
which provides a portable abstraction of the hierarchical hardware topology. It would be useful to have
an interface to a library to get the hardware representation.

• Using storage pools to partition the heap. The idea is to allow users to allocate objects at addresses
where they can be accessed more efficiently, for example by choosing a local memory bank. Storage
pools appear as the obviuos choice to do it, but the issue is that you cannot set the address of a storage
pool; Ada lets you partition the heap into separate storage pools, but you cannot specify their address
location. The workshop agreed it would be interesting to be able to specify the address attribute of a
storage pool. POSIX has typed memory facilities [5] to control the allocation of memory pools.

Hence, it was considered appealing to add support to represent memory topologies, and to be able to use
this information to allocate objects in an informed manner.

We considered as well whether it would be good to have the means to indicate that an object is only used
by tasks executing on the same processor. This information could be used to indicate that all those tasks
share the same cache, and hence enforcement of cache coherence would not be needed. However, we realized
that this is not an issue because the hardware would enforce cache coherence only when needed, and if two
tasks are in the same CPU, data can remain in cache without being written to memory (it would be written
to memory if another core tries to read/write this memory area).

7 Deferred attributes

During this session, Sergio Sáez stated the existing limitations of the current model of setting attributes
(priority, deadline and affinity). Possible ways to address this issue where discussed in the session about
“Concurrency Issues” [3].

Priority, deadline and affinity can be changed dynamically (Set {Priority,Deadline,CPU}) and all of
these are dispatching points. Ada 2012 allows you to change deadline and affinity after a delay (De-
lay Until And Set {Deadline,CPU}), but it is not possible to set more than one of these attributes atomically.
When these task attributes are not changed atomically, some scheduling artifacts could arise giving rise to
incorrect schedules [7]. We agreed that we want to be able to atomically change task’s attributes to avoid
unintended effects.

Possible solutions using timing events or protected objects to perform these changes atomically were
discussed. However, they could not meet the requirements when changing another task’s attributes.

The addition of subprograms for setting attributes at the next dispatching point (such as Set Next {Priority,
Deadline,CPU}) was proposed and discussed in more detail during the “Concurrency Issues” session.

8 Conclusion

There was a very interesting and constructive discussion during all the morning session (continued during the
afternoon and the rest of the workshop) about the challenges raised by the new multiprocessor architectures.

The first important outcome to point out is that the current support for multiprocessors in Ada 2012
(dispatching domains) is considered very appropriate. In addition to that, it matches rather smoothly the
support typically offered by multiprocessor operating systems.

Two mechanisms were explored to make dispatching domains more flexible. One was the possibility
of setting dispatching domain’s scheduling policies, which was deemed not very important since it can be
achieved with the current support. The second was to migrate CPUs among dispatching domains, and
was considered interesting for implementing mode changes. This workshop encouraged the submission of
proposals addressing these dynamic dispatching domains.

Another subject considered very appealing for future workshops was the support for user-level fine-
grained parallelism. As more and more CPUs are made available, the notion of task is perhaps not the right
abstraction, with respect to controlling parallelism with smaller granularity.

It was also agreed that Ada provides limited expressive power for non-SMP architectures, and it would
be good to add more control over the physical address map.

Ada Letters, April 2013 136 Volume XXXIII, Number 1



Finally, better support for deferred attributes was motivated during this morning session, but lunch time
deferred the discussion of the required interface until a later session . . .
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Session Summary: Multiprocessor Issues, part 2 (resource control protocols) 

Chair: Andy Wellings 

Rapporteur: Luís Miguel Pinho 

 
 

 
1 Introduction 

The second session on the topic of Multiprocessor Issues took place after a post-lunch relaxing walk on Picos de 
Europa, 800 meters above the workshop location and more than 1800 meters above the sea level. Indeed a 
stimulating activity to foster a productive session.  

The goals of this session were: 

A. To  review and evaluate the efficacy of the Ada 2012 support in the area of multiprocessor resource control 

- The first topic being to analyze if the Reference Manual (RM) for Ada 2012 had been fully updated 
concerning priority inheritance issues, given that Ada 2012 allows tasks to be fully partitioned, globally 
scheduled or scheduled in disjoint domains; 

- A second topic was the wording of priority inheritance for the case of Earliest Deadline Scheduling in 
multiprocessors, where a potential issue had been put forward by [1]. 

- The third topic was to evaluate whether Protected Objects should be used only for local resource access or 
if new access protocols were needed to allow it to be used globally without the need for spin-locks, 
following a position paper on the topic [1]; 

B. To look beyond Protected Objects and Rendezvous to other paradigms amenable to be used in multiprocessor 
platforms, for instance Software Transactional Memory (STM) or wait-free queues 

- The objective was to analyze to what extent the Ada primitives are suitable to implement these new 
paradigms and if secondary standards were the appropriate mechanism to introduce these paradigms into 
Ada; 

- In particular, STM would be analyzed in more detail as there was a position paper on the topic [2]. 

C. To review previous workshops proposals of new synchronization primitives to improve parallel execution of 
Ada programs.  

- Following a proposal from [3] the workshop decided to revisit broadcast primitives for calling PO 
subprograms in parallel [4, 5] and the use of parallel barriers in Protected Objects [4, 6]. 

2 Ada 2012 support in the area of multiprocessor resource control  

2.1 Review of priority inheritance and task partitioning 
In order to provide a basis for discussion, the Session Chair started by presenting an overview of the specification of 
priority inheritance (Ada 2012 RM D.1): 

- During activation, a task being activated inherits the active priority that its activator (see 9.2) had at the 
time the activation was initiated. 

- During rendezvous, the task accepting the entry call inherits the priority of the entry call (see 9.5.3 and 
D.4). 
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- During a protected action on a protected object, a task inherits the ceiling priority of the protected object 
(see 9.5 and D.3). 

The chair then introduced into the discussion if the meaning of priority inheritance would still hold in a fully 
partitioned system (when the task inheriting the priority is on a different processor to the task which is waiting) or in 
a cluster-based system (when the task inheriting the priority is in a different dispatching domain to the task which is 
waiting). Would inheritance of priorities among domains be meaningful, if tasks were interacting in two different 
dispatching domains, using different priority ranges?  

A note was nevertheless made that the current Ada model, albeit allowing multiple dispatching domains, imposes a 
single scheduling policy in all domains. Therefore, after several rounds of discussion, there was an agreement that 
priority assignments in all processors should be globally coherent. If that approach is followed, inheritance of a 
priority from one processor to the other is always correct. 

2.2 EDF, priority inheritance and Multiprocessors 
In this short topic, [1] noted a potential misleading wording of paragraph 26 in section D.2.6, that could allow 
programs to behave incorrectly: 

For a task T to which policy EDF_Across_Priorities applies, the base priority is not a source of priority 
inheritance; the active priority when first activated or while it is blocked is defined as the maximum of the 
following: 

[…] 

-  the highest priority P, if any, less than the base priority of T such that one or more tasks are executing 
within a protected object with ceiling priority P and task T has an earlier deadline than all such tasks; and 
furthermore T has an earlier deadline than all other tasks on ready queues with priorities in the given 
EDF_Across_Priorities range that are strictly less than P. 

The workshop discussed the issue, and although there was not an agreement that the sentence was incorrect, it was 
agreed that Alan Burns would further analyze the issue after the workshop to check if the wording would need to be 
clarified. 

2.3 Access protocols for Protected Objects in multiprocessors  
In the third topic of the session, the Chair started by providing an overview of the Reference Manual wordings 
concerning the access and control protocols for Protected Objects, noting that both the RM and the Annotated 
Reference Manual (ARM) do not fully define the access protocol for a protected object on a multiprocessor system.  

For instance, Note 19, Section 9.5.1 states: 

- If two tasks both try to start a protected action on a protected object, and at most one is calling a protected 
function, then only one of the tasks can proceed. Although the other task cannot proceed, it is not considered 
blocked, and it might be consuming processing resources while it awaits its turn. There is no language-
defined ordering or queuing presumed for tasks competing to start a protected action on a multiprocessor 
such tasks might use busy-waiting; for monoprocessor considerations, see D.3, “Priority Ceiling Locking”. 

Discussion: The intended implementation on a multi-processor is in terms of “spin locks” – the waiting task 
will spin.” 

While in D.2.1, paragraph 3, it states: 

- It is implementation defined whether, on a multiprocessor, a task that is waiting for access to a protected 
object keeps its processor busy.  

Thus it is implementation defined whether spinning occurs non-preemptively or, if not, at what priority it is 
performed. Furthermore, it is not defined whether there are queues (FIFO or priority) associated with the spin-lock. 
The workshop agreed that this could pose a potential problem to analyze maximum blocking times.  

Afterwards, Andy Wellings performed a review of the most current used shared data protocols for multiprocessor 
systems, analyzing if these could be implemented in Ada. From the perform analysis, the conclusion was the 
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majority of these protocols could not be used, as they were based in suspending contending tasks in FIFO or Priority 
Queues, something that was disallowed in Ada.  

At this point Michael Gonzalez noted that there was nothing in Ada preventing an implementation based on 
suspending on the lock. Andy noted that the RM states that access control in multiprocessors should be done with 
spin-locks. After a brief discussion, the general view was that although the RM promoted the spin-lock model, it 
allowed implementations to provide alternative implementations. 

Alan Burns then proposed that if there was a recognized good solution for access control protocols based in 
suspension in the lock, the RM wording could be changed in the next revision process. 

The session then went to analyze if it would be useful to allow the programmer the ability to change the underlying 
locking code (thus controlling the implementation). That would allow trying different protocols or to use the best fit 
for a particular applications.  

Both Alan Burns and Tullio Vardanega noted that the current model in Ada is the result of many years of research 
which provided a sound access model for the monoprocessor case. The current work for the multiprocessor case was 
still far from that and there was no clear winner at the moment. The workshop came back to the issue of the 
suitability of the concurrency model of Ada for multiprocessors, but the general feeling was that there was yet no 
general agreement on what the model would be and what protocols to support.  

A note was also made by José Ruiz that usually the access model of the Protected Objects uses mechanisms which 
are provided by the underlying Operating System. It would not be possible to give the programmer direct access to 
those. However, Andy noted that the idea being proposed was different, in that the approach would be to provide 
applications with an interface to specify application protocols that the runtime could used instead of the one 
provided by the underlying operating system. 

Then Andy presented a proposal [1] of an API that allowed to control and extend the queue locks, and implement 
the access control protocols:  

package System.Multiprocessors.Queue_Locks is   
  type Queue_Order is (FIFO_Ordered, Priority_Ordered); 
  type Spinning_Priority is (Active_Priority_Of_Task,  

                                     Non_Preemptively);   
  type Spin_Lock( 

          Length : Positive := 1; 

           Order : Queue_Order := FIFO_Ordered;                              
           At_Pri : Spinning_Priority := Non_Preemptively) 
           is private;  
  function Acquire(L : Spin_Lock) return Boolean 
  procedure Release(L : Spin_Lock);  

 
  type Suspension_Lock( 

            Length : Positive := 1; 

            Order : Queue_Order := FIFO_Ordered ) 
          is private; 
 
  function Acquire(L : Suspension_Lock)  return Boolean; 
  function Remove_Head(L : Suspension_Lock) return Task_Id;  
  procedure Add(L : Suspension_Lock; T : Task_Id); 
  function Highest_Queued_Priority(L : Suspension_Lock) 
       return Any_Priority; 
  procedure Release(L :  Suspension_Lock); 
 
private 
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   ... 
end System.Multiprocessors.Queue_Locks; 

 
 

package System.Multiprocessors.Protected_Object_Access is     
  type Lock_Type is (Read, Write); 
  type Lock_Visibility is (Local, Global); 
  type Protected_Controlled is new Limited_Controlled with private; 
  overriding procedure Initialize (C : in out Protected_Controlled); 
  overriding procedure Finalize (C : in out Protected_Controlled);   
  procedure Lock (C : in out Protected_Controlled; L : Lock_Type;  

                         V : Lock_Visibility;  Ceiling : Priority;  
                         Tid :  Task_Id);   
  procedure Unlock (C : in out Protected_Controlled; Tid :  Task_Id); 
private 

 ... 
end System.Multiprocessors.Protected_Object_Access;  

 
Simultaneously an Aspect in the Protected Objects would allow the programmer to specify that access protocol was 
user defined: 

 
protected type X (PC : access Protected_Controlled) with 
      Locking_Policy => (User_Protected, 
                         Lock_Visibility => Global,  
                         Locking_Algorithm => PC) is 
  procedure A; 
end X;  
 

Several issues were still open, such as if the proposed functionality would be sufficient to build the current and 
future protocols or if spin-locks would still be predefined, but the advantage of this model was allowing to use better 
algorithms (and test new ones) and still be allowed to use Protected Objects as the data sharing mechanism. 
Furthermore, compilers can reject or ignore unsupported aspects/pragmas.  

To summarize, two approaches could be made available to allow programmers to specify access protocols: 

- One would be to use low-level abstractions (such as locks), being Protected Objects not used for 
multiprocessors; 

- The second being Protected Objects augmented with user defined access protocols. 

The general agreement of the workshop was that the latter would be the better approach. The workshop view is that 
this is a worthwhile idea that should be further exploited and presented in the next IRTAW. 

3 Looking beyond Protected Objects 

3.1 Software Transactional Memory 
In the second part of the session, Miguel Pinho started by presenting an overview of Transactional Memory (TM), 
providing a quick overview of how in this approach atomic sections are executed concurrently and speculatively, in 
isolation. In particular, Miguel briefly explained how transactions worked with multiple versions of the data objects, 
allowing increasing the parallelization of execution.  

Transactional Memory provides a higher-abstraction to programmers, which can focus on the algorithms, writing the 
sequential code and identifying the atomic sections. The underlying TM mechanism then controls the concurrent 
interaction of the transactions.  
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Studies show that TM is an alternative to locks for larger number of cores, particularly under low contention, when 
there is a predominance of read-only or short running transactions and there is a low ratio of pre-emptions during its 
execution. Nevertheless, TM suffers from extra overheads, such as the time needed to access data (it is not accessed 
directly and updates may be aborted) and the extra memory needed for having multiple versions of the data. 

A proposal was being made to support Software TM, as, although less efficient that its hardware counterpart, it was 
more flexible and more implementations and research was being performed. The proposal was for a standard API 
which would allow programs to be independent of particular STM implementations and algorithms, and that would 
also allow to test new contention protocols. 

Miguel then presented an example of a potential (conceptual) implementation from [2], currently only addressing 
non-nested transactions: 

-- we need a transaction identifier structure 

My_Transaction : Transaction; 

-- start an update transaction 

My_Transaction.Start(Update); 

loop 

  -- read a value from a transactional object 

  x := trans_object_1.Get(My_Transaction); 

  -- write a value to a transactional object 

  trans_object_2.Set(My_Transaction, y); 

  -- try to commit transaction 

  exit when My_Transaction.Commit; 

exception 

  -- handle possible exceptions here... 

end loop; 

 

-- Transactional object 

package Transactional_Objects is 

  type Transactional_Object is tagged private; 

  -- examples of transactional class methods 

  procedure Set(T_Object: Transactional_Object; 

                Transaction_ID : Transaction; 

                Value : Object_Type); 

  function Get(T_Object: Transactional_Object; 

               Transaction_ID : Transaction) 

           return Object_Type; 

private 

  type Transactional_Object is tagged 

  record 

    Current_Value : Object_Type; 
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    Accesses_Set : <list of pointers to transaction identifiers> 

    -- some other relevant fields... 

  end record; 

end Transactional_Objects; 

 

type Transaction_Type is (Read_Only, Update); 

-- Transaction identifier 

package Transactions is 

  type Transaction is tagged private; 

  procedure Start(T : Transaction; 

                  TRX_Type : Transaction_Type); 

  procedure Abort(T : Transaction); 

  procedure Terminate(T : Transaction); 

  function Commit(T : Transaction) 

           return Boolean; 

private 

  type Transaction is tagged 

  record 

    Data_Set : List_Ref_Transactional_Objects; 

  end record; 

end Transactions; 

 
In the following discussion, the workshop made a note that the initial read snapshots and the final commit operations 
would need to be actually performed in memory, so transactional data (only the original not the multi-versions) 
would need to be volatile.  

A doubt was also raised if the implementation of STM would require changes to the language or if standard Ada 
provides all mechanisms to allow such implementation. It was concluded that the proposed API model is possible to 
implement, but other models (e.g. declaring transactional objects at the language level) could be interesting to 
address. It would be also important to incorporate in the proposal the capability for the user to implement its own 
contention control algorithm. 

As a general conclusion, the work was encouraged by the workshop, and it was considered that a prototype 
implementation would be important to evaluate the proposal. Steve Michell then raised the issue that if a solution 
was achieved it could be released as a Technical Report or Technical Specification so that initial implementation and 
evaluations could be performed. Nevertheless, Joyce Tokar noted that it would not be possible if syntactic changes 
to the language were required – this can only be done through the RM. 

4 Mechanisms for improved parallelism 

4.1 Broadcast of operations to an array of POs 
The first topic in the third part of the session concerned in proposal that was made at IRTAW 13 [4] to support a 
parallel broadcast of calls to an array of Protected Objects: 

protected type po_type is 
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  procedure call(val : integer); 
end po_type; 

 
po_array : array (1..10) of po_type; 

po_array(7).call(37);   −− single instance call 
po_array.all.call(25);   −− broadcast to all elements of po array 

po_array(1..10).call(25);  −− alternative broadcast to all  

                           -- elements of po array 

po_array(2..5).call(13);  −− broadcast to restricted range of elements  

 

One issue that was debated was how the model could allow broadcasts with different data for each actual object. A 
proposal was also made to consider the use of synchronized interfaces to provide more flexibility to the broadcast.  

Afterwards, the usefulness of this mechanism was largely discussed, particularly because the parallel calls would 
require some execution context (thus it related to the discussion on the previous session on the Ada parallel model). 
The initial proposal had been performed in the context of direct compilation of Ada code to hardware where these 
parallel calls could be directly mapped in the FPGA.  

The final conclusion was that this was not considered to be currently needed. 

4.2 Parallel barriers in functions on POs 
The final topic of the session was to revisit the use of parallel barriers in functions within Protected Objects. In the 
previous workshop the incorporation of parallel barriers had been considerably discussed. The discussion had been 
separated in both defining a simple task parallel barrier mechanism similar to suspension objects, and allowing tasks 
in Protected Objects special entries to be released in parallel. Although the former has made it to Ada 2012 
(Synchronous Barriers), the latter, although several rounds of discussion and multiple proposals being made (see 
[6)), had not reached a conclusion.  

A note was made that one of the difficulties with implementing this type of barriers was the data passing issue. 
POSIX provides simple barriers, because some hardware platforms directly support them. Nevertheless, this does 
not include data sharing, so this would be difficult to implement.  

Finally, the workshop agreed that it would be good to have a model similar to barriers, but more generic and 
allowing more complex interactions than Synchronous Barriers (and data passing), but that a suitable approach 
needs further investigation. 

5 Conclusions 

The session was mainly devoted to analyze how the ubiquitous multicore and multiprocessor platforms impacted the 
Ada mode for resource control among tasks: 

- In the first topic analyzed (priority inheritance and task partitioning) the workshop concluded that the 
assignment of priorities in partitioned approaches had to be globally coherent and that in this case, priority 
inheritance between tasks in different domains was always correct. 

- In the second topic (priority inheritance under EDF), the workshop felt that there was a possible misleading 
wording of the behaviour of priority inheritance under EDF, and it was decided to analyzed this further to 
propose clarification if required. 

- In the third topic (access protocols for Protected Objects) the workshop considered important that users are 
given an interface to control and define different access protocols than simple spin-locks. Further work in 
this topic is encouraged. 

- In the fourth topic (Software Transactional Memory), the workshop concluded that work on other paradigms 
for concurrency interaction with larger number of cores was important. Further work in this topic is 
encouraged. 
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- In the fifth topic (broadcast calls for Protected Object arrays), the workshop considered that currently there 
was not a need for this mechanism. 

- Finally, in the last topic (parallel barriers in Protected Objects), the workshop concluded that this would be a 
good mechanism to have, but that a suitable approach needs further investigation. 
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Session Summary: Language Profile and Application Frameworks 

Chair: Alan Burns 

Rapporteur: Tullio Vardanega 

1 Introduction 

The Chair’s introduction enumerates the issues raised by the papers assigned to the session: 

 Beyond Ravenscar – other profiles 

 Ravenscar and distribution 

 Ravenscar and EDF 

 Code archetypes for Ravenscar 

 Real-time framework – dealing with multiprocessors and mode changes. 

The initial group’s perception is that the attention should focus first on the discussion of new language profiles, 
which is bound to require the largest fraction of the time duration of the session. The group agrees to this proposal, 
and the Chair presents the highlights of the profile proposal that Burns and Wellings made in [1]. 

2 Language profiles beyond Ravenscar 

An element of the rationale for looking beyond Ravenscar is to avoid the feature creep phenomenon that may 
diminish the distinctive nature – and the measurable success – of the Ravenscar Profile (RP). The existence of the 
full language and its wealth of features should be considered to specify new profiles with an expressive power not 
necessarily close to the end of the RP. 

The group understands that there exist two fundamental needs behind language profiles of interest to IRTAW, 
and to its constituency: (a) to have a coherent set of functionalities; (b) to warrant ease and efficiency of 
implementation, and, possibly, amenability to certification, although not necessarily to the highest level. 

Andy Wellings illustrates the profile proposal made in [1]. The envisioned profile has a twofold motivation: 

(1) To gain the ability to tolerate timing faults, which Ravenscar is poorly equipped for, since its fundamental 
strength is the assurance of absence of them.  

(2) To address the greater uncertainty in timing analysis typical of multicore computing. 

The direction taken by Burns and Wellings proposal is to incorporate in the profile sufficient means for software 
dynamic fault tolerance (as per Anderson and Lee’s model in [2]): error detection, damage confinement and 
assessment, error recovery, fault treatment and continued service. 

The discussion reviews some variants of fault-error-failure chains, all essentially based on the following, 
recurrent causal chain:  

 Error: WCET overrun or blocking duration overrun (as a ramification of WCET underestimation).  

 Error propagation: deadline miss. 

 Failure: untimely delivery of service. 

The detection means that can be deployed to counter the above chain range from the extreme of deadline miss 
detection – which however is not a necessary consequence of error propagation, perhaps because of slack capacity 
available due to less frequent arrival of sporadic tasks in the system – to budget time overrun detection, including 
blocking time, for better damage confinement, via monitoring the frequency of arrival of sporadic tasks. 

The Ravenscar Profile does not allow the use of Ada.Execution_Time.Timers (D.14.1): as a 
consequence, one can only poll for overrun detection, which obviously is not satisfactory. 
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Frequency of sporadic arrivals cannot be controlled at language level, but can by the application, for example by 
forcing task suspension before waiting for the next release event. 

Monitoring for overrun of blocking time is no standard provision for either operating system or Ada. The risk is 
that this fault may go undetected. 

For damage confinement one could use budget servers, which the Ravenscar Profile does not support. 

The error recovery strategies may include: stopping the overrunning task and then starting a new task to resume 
service; using the programmatic interface of the asynchronous task control package, D.11. Implementing them under 
the constraints of the Ravenscar Profile, which does not allow any of those features, calls for application-level 
solutions that may obfuscate the resulting code. 

The group agrees that the above considerations provide sufficient motivation to define a new profile, which goes 
beyond Ravenscar and, quite possibly, includes all of its features. 

Discussion ensues on the general characteristics of the profile. Joyce Tokar comments that the idea of a new 
profile is interesting and attractive but it is hard to tell how difficult it may be to implement. Michael González 
argues that we should pay attention to allowing features that at the time of Ravenscar were known to be extremely 
complex to implement. He observes that alternative models may exist, such as e.g., ARINC 653, which might be an 
interesting target to specify a language profile against. Joyce Tokar voices agreement to that consideration, but also 
reckons that discussing an ARINC 653 profile would stray the discussion away from the intended focus. 

The discussion then moves to the need for dynamic priorities. The question before the group is what language 
features we really need to be able to suspend / resume individual tasks? The choice is between dynamic priorities 
(D.5) and asynchronous task control (D.11). 

At the end of this first round of high-level discussion, there is full consensus from the group that we need a new 
profile, distinct from Ravenscar. What we want is a consistent, cohesive profile, and not a string of optional 
additions to Ravenscar. We should however pay attention to keeping the implementation and certification distance 
from Ravenscar affordable for language implementers. The group’s consensus is also that the starting point for the 
definition of a new profile should be a clear application programming model, from which we can then determine the 
implementation requirements, language restrictions, and obstacles to certification. Burns and Wellings’ paper [1] is a 
good starting point. 

At this point the Chair invites the group to delve deeper into the discussion of specific features, with special 
attention at how they would work in a multicore environment. 

The first feature on the list is Set_CPU (D.16.1). Including it in the profile supports error recovery strategies 
that use load balancing. In the envisioned model, tasks are statically allocated to groups, but they can be moved 
across cores. This feature provides key support to a task splitting approach to handling timing faults whereby 
overrun-work may be performed opportunistically, via load balancing, on a core different from the one in which the 
offending task was initially assigned. 

Michael González voices his preference for a suspension-only model to one that also allows overrunning tasks to 
resume. An inconclusive discussion then follows on the implementation complexity that may be incurred by 
asynchronous task suspension. This issue, among others, needs to be further studied and should become a topic of 
investigation for IRTAW-16. 

The second feature on the list is the restriction “one CPU Timer per task”. The rationale for that restriction is 
that, on a single core, the timer resides in the same CPU as the task to which it belongs. It is natural to extend this 
notion to multicore. The problem with multicores however is that systems may exist where there is a single clock for 
all cores: in that case it may become complex to map time events to the CPU where the task resides. The reason to 
attach the event handler to the CPU where the task executes is that this assignment warrants that if the handler 
executes then certainly the task does not, and consequently we don’t need complex asynchronous control to hold the 
task from running.  

The issue of setting affinities for the handlers of timing events, CPU timers and “normal” interrupt handlers is 
discussed. The idea is to require the affinity for time-related handlers to be consistent (i.e., equal) to that of the task 
that causes handler invocation. The discussion then delves into the general problem of what affinities – also for 
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Ravenscar and full Ada – can be set to protected handlers in multicores. It rapidly becomes evident that this is a 
large, general problem which should be set aside for later and deeper analysis, for discussion at IRTAW-16. 

The next feature submitted to discussion is the support for Group Budget: the concept is that fault containment 
strategies for collections may offer greater flexibility than for individual tasks (yet at the cost of not knowing what 
the offending task actually is). The group’s concern is that a non-trivial implementation burden may be incurred in 
supporting that feature. To make things simpler we need to assume that the group budget must be per CPU. Intense 
discussion takes place on whether dynamic group management (i.e., adding and removing tasks from groups at run 
time) should be preferred to having static group membership only. 

The discussion returns to the issue of dynamic priorities: there is majority sentiment that the current slant of the 
dynamic priority package is too general for our needs. We do not really want any generalized agent to be allowed to 
set task priorities: we rather want specialized / dedicated handlers (which perhaps could be identified by some 
restriction) to do that. One way around this problem is to prefer asynchronous task control (with hold only) to 
dynamic priorities. The group’s sentiment on the alternative appears to be divided. The Chair calls for a straw poll, 
which shows 10 in favour of asynchronous task control, and 8 doubtful abstentions. 

The final feature for discussion in the part of the session is entry queues. We still require single entry (for the 
same reasons why we had that restriction in Ravenscar), but we want to allow multiple calls to queue. We feel the 
guard should continue to be a Boolean only. ‘Count can however be used in the entry body. On that account, an 
intense yet inconclusive discussion takes place on the safeness, for our purposes, of the semantics of Hold being 
called when the task has a call in an entry queue. As part of this slot, the issue is also briefly discussed as to whether 
nested protected subprogram calls should be allowed in multicore processing: the group observes that the theory of 
real-time systems has not yet developed a convincing model for nested resources. It may therefore be wiser at this 
time to disallow nesting. 

Before calling this discussion to an end, the Chair invites suggestions for further features of interest for the 
envisioned profile; the group response includes: barriers in multicores; relative delay statement and relative timing 
events. The intent is to record this need, invite the group to investigate it in the future, and then discuss the findings 
at IRTAW-16. 

3 Ravenscar and distribution 

The Chair then invites a short report on the progress of the University of Cantabria’s (UC) group in the 
development of a Ravenscar- and SPARK-compliant implementation of the Distributed Systems Annex. Héctor 
Pérez, on behalf of UC, explains that two language features are needed by the current implementation but conflict 
with the SPARK restrictions: generics; and abstract types.  

The group sentiment in that respect is that too strict adherence to SPARK may defeat the purpose of the UC 
project: “educated” generics and abstract types are useful abstractions for the project and they should be retained. 

A side issue was raised before the discussion on this topic came to an end: language support for initialization-
level configuration is desired (which comes handy for, e.g., end-point receivers) that does not resort to full-fledged 
programmatic interfaces, which could be exposed to erroneous usage. No conclusion is reached on this point, other 
than recording it for further investigation. 

4 Code archetypes and programming frameworks 

The subsequent slot of discussion focuses – in a joint fashion – on hearing a report on the progress of the work 
conducted at the University of Padova (UPD) for the finalization of Ravenscar code patterns for automated code 
generation [3], and at the Universitat Politècnica de València (UPV) for the extension to multicore of the real-time 
programming framework [4]. 

Both reports show good and interesting progress. Seeing some complementarity between the qualities of the two 
respective approaches, the group encourages the teams at UPV and UPD to investigate the possibility of integrating 
their results. 
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5 Profiles: Ravenscar and EDF 

The final slot of the day’s discussion is devoted to examining Alan Burns’ proposal in [5] for an EDF version of 
the Ravenscar Profile. The author’s rationale for the proposal is that Ada 2005 supports EDF and mixed dispatching 
policies via Baker’s stack resource protocol [6]. However, the resulting protocol is complicated to understand as 
well as to implement. 

In the author’s vision, an interesting alternative to support resource sharing under EDF is to make protected 
execution non-preemptive. The consequences of that approach are: in the pro side, an easy implementation at 
language level since priorities are no longer needed and a single ready queue is required; on the cons side instead: 
longer blocking time for tasks owing to non-preemption during protected execution. 

The group’s sentiment on the proposal gets quickly divided. For some, Burns’ model seems attractive and, in a 
way, conducive to a Ravenscar adoption of EDF symmetrical, for simplicity and theory support, to Fixed Priority 
Scheduling (FPS). For others instead, and for Michael González in particular, EDF alone should be considered 
insufficient for safely programming HRT systems: in Michael’s view one would need additional features, either 
EDF+FPS (as in previous publications from our community) or budget control. Intense discussion takes place on 
this interesting subject, but it comes to no final conclusion owing to lack of time. The Chair invites the group to 
continue investigating this matter with a view to reporting progress at IRTAW-16. 
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Session Summary: Concurrency Issues 
Chair:            Juan Antonio de la Puente
Rapporteur:   Stephen Michell               

 1 Introduction
This session was the final session of International Real Time Ada Workshop 15. It was chaired by Juan Antonio de la
Puente. Stephen Michell was the rapporteur. Papers and issues discussed were

 Concurrency and real time vulnerabilities under consideration by ISO/IEC/JTC 1/SC 22/WG 23 Programming
Language Vulnerabilities Working Group.

 Execution time accounting as being implemented by the Ada programming language and considerations for
multiprocessor environments

 Discussion of Set_CPU and deferment of attribute setting in multiprocessor environments.
Section 2 discusses the concurrency vulnerabilities  with 2.1 discussing the vulnerabilities in [Michell 2011] and 2.2
discussing real time vulnerability outlines presented by Stephen Michell at the workshop. Section 3 summaries the
discussion of execution time accounting. Section 4 is Ada real time and virtualization. Section 6 is 

 2 Concurrency Vulnerabilities 

 2.1 Methodology
As discussed in [BW 209] and [Michell 2011], the work being done by WG 23 to date does not address the real issues of
vulnerabilities presented by concurrent programs. [Michell 2011] addresses this with a proposal for six vulnerabilities for

 Thread activation,

 Thread termination – directed

 Thread termination -  premature termination, 

 Shared data access, 

 Concurrent data corruption, and 

 Concurrency protocol errors. 

The workshop examined these proposals and then went further to consider three proposals to develop real time vulnerability
writeups for 

 Real time timing vulnerabilities, 

 Real time thread control, and 

 Real time scheduling.

 2.2 General Vulnerability Discussion
Steve introduced the topic by first discussing vulnerabilities, the notion of exploits of vulnerabilities. For a general writeup
on  vulnerabilities,  their  effects,  and  the  role  that  programming  languages  can  play  in  creating  and  helping  to  avoid
vulnerabilities, see  section 5 of [TR 24772]. More discussions on weaknesses and vulnerabilities can be found at the Open
Web  Application  Security  Project  [OWASP],  the  Common  Weakness  Evaluations  [CWE],  Common  Attack  Pattern
Enumeration [CAPEC], and the Build Security In project [BSI]. 

There are two kinds of vulnerabilities discussed by TR 24772.  The first is called “Language Vulnerabilities” and are
documented in section 6 of that document. The second is “Application Vulnerabilities” in section 7 of this document. TR
24772 explains the difference as follows.
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“This Technical Report focuses on a particular class of vulnerabilities, language vulnerabilities. These are properties of
programming  languages  that  can  contribute  to  (or  are  strongly  correlated  with)  application  vulnerabilities—security
weaknesses, safety hazards, or defects. An example may clarify the relationship. The programmer’s use of a string copying
function that does check length may be exploited by an attacker to place incorrect return values on the program stack,
hence passing control  of  the execution to code provided by the attacker.  The string copying function is  the language
vulnerability and the resulting weakness of the program in the face of the stack attack is the application vulnerability. The
programming language vulnerability enables the application vulnerability. The language vulnerability can be avoided by
using a string copying function that does set appropriate bounds on the length of the string to be copied. By using a
bounded copy function the programmer improves the predictability of the code’s execution.

The primary purpose of this Technical Report is to survey common programming language vulnerabilities; this is done in
Clause 6. Each description explains how an application vulnerability can result. In Clause 7, a few additional application
vulnerabilities are described. These are selected because they are associated with language weaknesses even if they do not
directly result from language vulnerabilities. For example, a programmer might have stored a password in plaintext (see
[XYM]) because the programming language did not provide a suitable library function for storing the password in a non-
recoverable format.”

The workshop  spent  most  of  the  session  discussing  the  real  time  issues  that  could  become vulnerabilities.  They  are
identified here as presented by Stephen on slides to lead the session.

It should be noted that TR 24772 uses the term “thread” where Ada uses “task” to designate entities that can execute
concurrently. For the purpose of this section, the term thread will be used exclusively.

 2.3 General Concurrency Vulnerabilities

 2.3.1 Thread Activation [CGA]
Steve presented the general principals as presented in [Michell 2011] section 5.1 Thread Activation [CGA]. There was
general agreement that there are language issues involved in the creation of threads such as resource exhaustion, undetected
failure  to  activate  of  some  threads,  and  the  resulting  system  failures  that  can  occur  during  creation.  Therefore,  this
vulnerability  belongs  in  section  6  Programming  Language  Vulnerabilities  of  ISO  IEC  TR  24772.  There  were  no
recommendations  for  further  subdivision  of  the  vulnerability  or  consolidation  with  other  vulnerabilities.  No  further
application workarounds or programming language extensions were discussed.

 2.3.2 Thread Termination (on request) [CGT] (and premature) [CGS]
The workshop decided to discuss the issues of thread termination together. Both vulnerabilities were presented as being
appropriate for section 6 of ISO IEC TR24772 as programming language vulnerabilities, since, even if the language does
not have a concurrency component, the underlying environment as presented by its libraries have such a paradigm and can
expose the issues. Languages that have concurrency as part of the language must consider all termination issues.There were
no recommendations for further subdivision of the vulnerability or consolidation with other vulnerabilities.

Joyce raised the issue that finalization of data and of control space after the directed termination of a thread is an issue that
must be discussed in [CGT]. Also, there must be a way to detect attempts to interact with threads that have been terminated
or requested to terminate, both in the period of termination and after the thread has been terminated. These issues will be
added to the submissions to WG 23.

 2.3.3 Concurrent Data Access   [CGX]
Stephen noted that this vulnerability was split from [CGY] so that issues of  direct access to data in concurrent and real time
data can be separated from shared resources that happen in external components of the system such as filing systems,
environment variables, and databases.

The workshop reviewed the writeup, and agreed that this was a language vulnerability and as such belonged in section 6 of
TR 24772. Andy noted that the issue of “volatile” of a shared variable was missing, in the sense that languages often reorder
reads and assignments and may not be aware that other assignment operations exist in other threads. The “volatile” directive
notifies  the  language  processor  not  to  perform such  re-orderings,  and  to  make  fetches  and  assignments  as  atomic  as
possible.

It was noted that there is another recommendation to application developers to always specify data elements as “volatile” to
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prevent language processors from performing such reordering.

 2.3.4 Concurrent Data Corruption [CGY]
Steve proposed in his presentation to target this vulnerability to TR 24772 sect 7 as an application vulnerability, since
external resources outside of the application itself, and the concurrent components accessing it may not be part of the same
program, so language-specific mechanisms to control access are not feasible in general.  There were no proposed additional
issues, language vulnerabilities or application workarounds discussed.

 2.3.5 Concurrent Protocol Errors [CGM]
The workshop discussed the vulnerability's target to TR 24772 sect 6 as a language or OS vulnerability and agreed

that it was appropriate because a number of languages and most operating systems (through libraries) provide protocols for
concurrency paradigms. No significant issues were identified as missing. No other application workarounds or  language
avoidance mechanisms were identified.

 2.4 Real Time Vulnerability Discussion
Stephen led the discussion from slides prepared to present three real time vulnerabilities, with the plan to use the workshop
discussions to generate writeups suitable for WG 23.

 2.4.1 Real Time Timing [CGQ]
The application vulnerability was identified as an application vulnerability (as opposed to a programming language
vulnerability) since almost all real time timing issues arise as a result of hardware issues, low level kernel issues and
application issues. The main issues identified initially were

 Drift between clocks, such as real time and time of day clocks, or between clocks on different processors

 Failure to track time of day clock updates due to leap seconds, time zone changes or corrections; and

 mismatches between time accounting and notification requests, such as posted wakeup times or deadlines

The workshop added to this

 Rollover of bounded clocks can cause timer calculations to fail

 mismatches between the resolution of the clock and the expectations of the application can cause wakeups or
deadlines to be too late or too early (usually too late)

 transfers between a time of day clock and real time clock can result in loss of precision and missed deadlines or
missed wakeups

The effects of these errors can be

 Wrong calculations

 Missed deadlines

 Wakeups that are too early or too late causing portions of the concurrency structure to fail

 guardian code (that relies on being notified if deadlines are missed) may misbehave if timers drift

Recommended approaches for application developers are:

 Develop systems whose concurrency model is amenable to static analysis, such as model checking, 

 Perform analysis of all aspects of timing with as much rigour as is possible;

 Choose  a  language or  environment  that  provides  the  capabilities  to  express  time,  select  the  appropriate  time
paradigm, and clock management mechanisms

 Implement measures to monitor time accounting, and drift between clocks, and be prepared to take corrective
action 
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 Identify mechanisms to identify misbehaving systems such as heartbeats or watchdog timers; and 

 Include monitors with the ability to reset the complete system back to a known state before continuing.
The usual result of such errors is erroneous behaviours or misbehaving feedback systems. Systems that rely on on-time
calculations and events and that experience such erroneous behaviour may experience catastrophic failures. Arbitrary code
execution is unlikely.

 2.4.2 Real Time Thread Control
Burns and Wellings [BW 2009] identified real time thread control issues as another real time potential vulnerability. The
workshop agreed that this was already covered in the vulnerability Protocol Lock Errors [CGM]. 

 2.4.3 Real Time Scheduling [CGP]
Real  Time  Scheduling  was  identified  as  a  programming  language  vulnerability  since  there  are  a  few  languages  and
operating systems that provide scheduling protocols suitable for real time, and use of the high level paradigms, such as the
Priority Ceiling Protocol can fix many of the issues in this domain. On the other hand, to make real time systems function to
specification, even using these protocols requires applications designers that clearly understand the domain and take the
necessary steps to allocate attributes to threads (such as deadlines and priorities)  and to communications and protocol
management code.

 The main issues identified were

 Priority inversion when a thread of a lower urgency (lower priority or later deadline) is executing and preventing
one of higher urgency (that is ready to execute) from executing.

 Scheduling mistakes resulting in threads not completing their work in the required time

 Missed thread deadlines due to priority inversions, scheduling mistakes and protocol errors

 Missed interrupts or events

 Excessive input or events

 Excessive use of a resource

 Lack of access policy or queuing policy resulting in indefinite waiting for some threads

These can result in

 Missed system deadlines

 Complete system failure

 System halting

 System ceasing to process input or deliver output

 Instability

 System not meeting specifications

It was noted that, in the real time realm, that even seemingly small changes, such as a change of a single priority to a single
thread can have very large impacts.

Recommended approaches for application developers are:

 Develop systems whose concurrency model is amenable to static analysis, such as model checking, 

 Perform this analysis with as much rigour as is possible;

 Choose  a  language  or  environment  that  provides  the  capabilities  of  priority  inheritance  and  priority  ceiling
protocol, and to use those capabilities;

 If using multiprocessors, be aware of the issues with scheduling, thread interaction and data and cache coherency
across multiple processors and be very conservative in the assignment of threads to processors; 
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 Identify mechanisms to identify misbehaving systems such as heartbeats or watchdog timers; and 

 Include monitors with the ability to reset the complete system back to a known state before continuing. 

Errors in this domain can be used to create covert channels, and can lead to complete system shutdown or misbehaviour, but
arbitrary code execution as a result of this vulnerability alone is unlikely.

 3 Execution-time accounting of interrupts
This  session  followed  on  from  Session  A,  where  the  focus  of  the  discussion  was  specialization  to  multiprocessor
environments..

While the workshop was in progress, participants received an advanced copy of a paper by  Kristoffer Gregersten on the
implementation of execution-time accounting of interrupts. A paper submitted by the same author [Gregersten 2009] was
instrumental in leading IRTAW 14 to recommend that Ada implement this accounting as part of Ada 2012, which is now
being finalized and which includes  this  capability.  In  the  paper  to  be submitted  to  the  Ada Users  Journal,  Kristoffer
summarizes an implementation of this new capability for the GNAT Ravenscar bare-board run-time library on a single-
processor embedded microcontroller. In his paper he documents a number of tests that show negligible additional overhead
to support this accounting, and he argues that this capability allows for protecting against interrupts arriving at a higher
frequency than expected or handlers exceeding their allocated budget.

Jose Ruiz reported that AdaCore has similar functionality implemented for GNAT Ada on embedded Leon32 and PowerPC
processors and suggested that the capability was very useful for their clients. 

 3.1 Deferred attribute setting mechanism

Sergio  raised  the  issue  that  the  current  wording  in  the  draft  Ada  2012  reference  manual  says   that
System.Multiprocessors.Dispatching_Domains.Set_CPU can cause excessive context switches for tasks that are executing
in a protected operation on CPU1 but make a call to Set_CPU to move itself to CPU 2. Clause D.16.1(27)  of the ARM says

“A call of Set_CPU is a task dispatching point for task T. If T is the Current_Task the effect is immediate, otherwise the
effect is as soon as practical.”

This could be interpreted to mean that Set_CPU calls into the kernel, effectively suspends the task while it moves it to
“CPU”,  possibly  causing  at  least  2  context  switches.  It  was  noted  that  the  same  wording  exists  for
System.Multiprocessors.Dispatching_Domains.Add_Task.

Here is a model of what can happen:

 T1 is executing on CPU1 with priority P1.

 T2 is executing on CPU2 with priority P2>P1. 

 T1 calls a protected operation PO_A that has a ceiling priority of P3>P2>P1. Within PO_A, T1 (which is now
executing at priority P3) executes a Set_CPU or a Add_Task call to assign itself to CPU2.

 T1 is immediately moved to CPU2 while still executing inside PO_A and preempts T2.

 T2 either is switched to a different CPU (depending upon T2's affininty) or is delayed until T1 completes execution
of PO_A.

 T1 completes PO_A, and its priority drops to P1, causing another context switch to permit T2 to resume execution.

There was significant discussion on the various issues. It was noted that there is no significant issue if task T1 is blocked or
delayed and another task changes its  CPU or affinity.  Changes to the running task,  however,  can have the difficulties
described above. In a real time system where T2 has a deadline, such additional overhead of context switches and execution
of protected operations in place of T2's execution could cause T2 to miss its deadline.

Miguel raised the issue that more deferred operations are required, such as Delay_Until_And_Set_Deadline (See ARM
D.2.6),  and noted that any combination of Set_CPU, Set_Deadline, and Set_Priority can cause excessive context switches
and priority inversions (such as the one described above) unless we can explicitly defer the setting of these operations.
Sergio's proposal contains the following subprograms [SC 2011]:
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Ada.Dispatching.EDF.Set_Next_Deadline(
        D : in Deadline;
        T : in Ada.Task_Identification.Task_Id 
          := Ada.Task_Identification.Current_Task); 

System.Multiprocessors.Dispatching_Domains.Set_Next_CPU(
       CPU : in CPU_Range; 
       T   : in Task_Id := Current_Task);

Ada.Dynamic_Priorities.Set_Next_Priority(
       Priority : in System.Any_Priority;
       T        : in Ada.Task_Identification.Task_Id 
                := Ada.Task_Identification.Current_Task);

Miguel proposed to add the following subprogram that set the deferred attributes immediately:

Set_Attributes(
       Attr : Deferred_Attributes;
       T    : in Ada.Task_Identification.Task_ID := Current_Task);

Where
type Deferred_Attributes is record

CPU: CPU_Range;
D: Deadline;
...

end Deferred_Attributes;

The advantage of this approach would be that it provides a consistent Set_Attributes, whereas the calls 
         Set_Next_Deadline,  Set_Next_CPU, ...,
permits different task calls to  interleave, creating different “Next” attributes to be set, at the point of the Set_Attributes.

There was general support for this concept. Steve proposed that these be in a child package of each package, possibly called
something like Ada.Dispatching.EDF.Deferred and Ada.Dynamic_Priorities.Deferred. It was not clear  under such a scheme
where Set_Attributes would be declared, so more work would be needed.

There was discussion as to what would happen if Set_Attributes was not called. The presumption was that the deferred
settings would happen when

 Set_Attributes was called

 The task awoke from a delay, delay_until, 

 The task was removed from a suspension object, 

 The task was released from a protected entry, after completing the operation of that entry

 The task completed a protected operation, or the outermost protected operation if it was executing in a nested
protected operation.

It was noted that one cannot rely upon a task being suspended, blocked or delayed for a significant period of time after
having a deadline, priority or affinity set, hence there needs to be a subprogram call to set the attributes immediately. 

Implementation approaches were discussed. The approach of having room for deferred attributes in the Task Control Block
or task attributes was discussed.  Such attributes would become effective when the task was released from a delay or
blockage, or immediately upon a call to Set_Attributes.

It was agreed that these issues needed further investigation, modelling and trial implementations before a formal proposal
could be made to WG9.

 4 Ada Real-Time Services and Virtualization
There was a discussion of Ada real time services and virtualization. It was decided that this was not a language issue, hence
discussion terminated.
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 5 Wrap up and Conclusions
This session was the final one of the workshop. The work on vulnerabilities gave Stephen material to feed back into the
work of WG 23. He expects that the next publishing of TR 24772 will contain at 6-8 concurrency vulnerabilities based on
the work done here. 
The next meeting of the workshop is planned for York area, UK in the spring of 2013.
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Abstract 
VHDL as a hardware description language has some 

short-comings for system level modeling. Since 
previous researches‎[10] tried to extend this language 

for high level modeling, using Ada structures, and 

also it has derived some of its basic structures from 

Ada at first, we have decided to extend Ada to a form 

called SystemAda that can model hardware at 

transaction level modeling. Ada because of its 

intrinsic features like concurrency and object 

orientation can be a good candidate for a high level 

hardware modeling language. In our previous works 

we have proved that Ada can have a link to Register 

Transfer Level (RTL) and Transaction Level 

Modeling (TLM) modeling‎[3]. Here we have proofed 
the detailed characteristics of our TLM_FIFO 

channel -- just like the real TLM_FIFO -- and a way 

to TLM2.0 interfaces. Finally by simulation time 

comparison between SystemAda and SystemC TLM 

equivalent models we have proved that there is no 

simulation time penalty in SystemAda over SystemC. 

1 Introduction 

 There are lots of problems for hardware design 

that all are due to complexity such as the speed of the 

design for hardware/software co-design and time to 
market, the experience of the hardware designers, and 

the costs of the development tools. To solve these 

problems we should handle the complexity by raising 

the level of abstraction. Evolution of design 

abstraction levels show that every 15 to 18 years, 

design abstraction moves to a higher level. Back in 

early‎1990’s,‎design‎of‎digital‎systems‎changed‎from‎

the old gate level design to register-transfer level 

design. New hardware design languages and new 

design methodologies were instrumental in 

this transition. At the RT level, designers have to 
focus on top-down partitioning, taking advantage of 

existing simulation and synthesis tools. 

 As systems are getting more complex and issues 

regarding hardware/software partitioning and various 

design constraints are becoming more important, 

another change is due to occur. This time, the present 

design at the RTL is giving way to the new 

transaction level design, TLM. At this level, software 

and hardware issues, use of embedded processors 

along with RT level components, combined hardware 

software verification and test, and relating higher 

level designs to low level manufacturing test have 
become issues that modern designers have to be 

dealing with ‎[1]. 

 According to the theory of design evolution ‎[1], 

TLM is state of the art level in design of complex 

digital systems. In TLM, a system is divided into 

computation and communication parts. In TLM, 
processing elements play the role of computation 

parts which communicate with each other through 

channels that can be characterized as communication 

parts in TLM specification. 

 In this paper, a number of packages are defined 

using Ada to support modeling of TLM 

communication infrastructures. These packages are 

referred to as SystemAda. TLM channels as well as 

TLM interfaces are described using our SystemAda. 

This paper is organized as follows. In Section 2, 

TLM is introduced and its advantages are discussed. 

Section 3 compares system level languages with each 
other. In Section 4 and 5, TLM_FIFO channel 

detailed characteristics and TLM2.0 interfaces 

respectively are implemented using Ada. Section 6 

presents the experimental results followed by 

conclusions in Section 7. 

2 TLM as the First Step toward ESL 

 In the recent years, the Electronic System Level 

(ESL) industry has defined a level of abstraction in 

modeling and design of systems. This level of 

abstraction is generally higher than RTL in that the 
timing details are not considered and the 

communications between modules are modeled by 

high level channels instead of a wire or a group of 

wires. This level of abstraction, which is going to 

become the starting point in system level design, is 

called transaction level and the act of modeling a 

system in this level is referred to as Transaction 

Level Modeling (TLM)‎[6]. System level designers 
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and innovators utilize the transaction concept in this 

level of system modeling. This concept has been used 

in networks for many years. 

 As a matter of fact, there is no special and unique 

definition for transaction level modeling between 

system level designers. Each EDA vendor or system 
level designer defines TLM by one of its aspects. In a 

general definition of TLM, the system is divided into 

two parts: communication and computation parts. In 

this definition, TLM is considered as modeling the 

communication parts of a system at a high level of 

abstraction (e.g., by function calls). With this 

definition, the computation parts (modules) of a 

design can be at various levels of abstraction. It is 

obvious that the higher level the modules are 

designed, the faster their simulation process and the 

easier their connection with communication parts 

are‎[2].  

 Features and advantages of TLM over RTL 

modeling have made designers to move their design 

starting point from RTL models to transaction level 

models. Although it can be used for faster modeling, 

the main purpose that designers use TLM is its 

simulation speed. Since the communications between 

modules are modeled with efficient and high level 

functions and the computational modules are also 

modeled in a higher level of abstraction, designers 
can gain over 1000x simulation efficiency from TLM 

simulation over RTL simulation. The simulation 

efficiency leads to other TLM features including 

more efficient partitioning, faster and more precise 

functional verification, faster hardware/software co-

verification, and faster hardware/software co-

simulation. 

 Some of the above features produce other benefits 

for the designers. For example, by modeling a system 

with TLM, the designer has a more comprehensible 

view for the design partitioning. A mature 
partitioning in a design can even affect the power 

consumption of the manufactured SoC. Designing in 

transaction level provides designers and their 

costumers an early design prototype. This early 

prototype helps designers clarify whether the 

complete design is feasible to be developed and 

implemented. In this prototype, several critical 

decisions, improvements, and changes can be made 

to prevent the failure of an entire project. Without 

ESL, these critical decisions could only be made after 

spending a lot of time and money for developing an 

RTL prototype of the design. In addition to ESL, the 
software team can start its software development and 

verification by this early prototype. In traditional 

RTL designs, the software team has to wait for 

completion of the RTL design before starting the 

software development‎[2]. 

3 Comparison of System Level 

Languages 

 Since we introduced the benefits of modeling the 

designs at system level, the first question which any 

designer would encounter is that which language 

should be used for system level hardware design. 

There are possible choices: SystemC, SystemVerilog 

and our specialized form of Ada (SystemAda). The 

answer to this question is very dependent on the 
purpose of system level modeling but some tradeoffs 

from inside and outside of the language, such as 

language constructs and semantics, tool support, 

third-party IP availability and access to 

knowledgeable engineers are also involved in this 

choice‎[24]. 

 The most popular languages which are used in 

hardware design nowadays are VHDL and Verilog 

which both are suitable for RTL and have substantial 
disabilities to cover system level. SystemVerilog is a 

system level language from Verilog family with 

verification purpose in mind from first advent. 

VHDL is used for high level design, but it lacks 

abstract timing and communication, genericity and 

Object Oriented modeling. Some groups like SUAVE 

have proposed some extension to VHDL to cover 

system level. Most of the extensions are added from 

Ada95 as the base language of VHDL from early 

development. It shows that Ada has potentials to be 

used as an HDL. Ada as an HDL has a long history 

which is out of scope of this paper‎[4]‎[8]‎[10]. 

 Among all of the languages mentioned above, 

SystemC and SystemVerilog are more common. The 

base language of SystemVerilog is Verilog and its 

main focus is on RTL modeling like Verilog. The 

main purpose of this language is verification. The 

enhancements related to directed test generation, 

assertion definitions and coverage metrics are all very 

valuable capabilities, and all are closely tied to the 

RTL implementation domain. 
 SystemC is a class library in C++ which is patched 

on top of it and TLM is patched after on top of 

SystemC. Due to lots of patches, there are many 

problems with debugging which are the most 

common user problems with this language. Since 

Ada is the base language of VHDL and it has 

inherent concurrency as well as object oriented 

structures, we have chosen it for implementing our 

TLM platform. 

3.1 Ada vs. C++ Family Languages 

 Ada has some advantages over C++ family 

languages as it is told in various references 

‎[5]‎[11]‎[12]‎[13]‎[23]. The most important advantages 
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of Ada over SystemC and C++ family languages are 

listed below: 

 

 High readability and well descriptive language 

 Faster and more convenient debugging  

 Inherent concurrency and interface types (not 
being patchy) 

 Having the link to RTL 

 Capability to export and import to/from foreign 

languages 

 Shorter simulation time 

 

 In order to give an idea of the difficulty of 

debugging in SystemC, we present two examples 

(Figure 1, Figure 2). In some cases, the error 

messages do not refer to the right point at the library 

and results in confusion of the designer. Here is a 
misleading error message that the real source of the 

error is in the design at TLM, but the error message 

itself refers to a predefined SystemC file that is in the 

lower layer rather than TLM (Figure 1). 

 
 

Error: (E529) insert module failed: simulation 

running 

In file: C:\Program Files\Microsoft Visual 

Studio\VC98\systemc-

2.1.v1\src\sysc\kernel\sc_module_registry.cpp:58 

In process: WR1.run @ 1 ns 
 

Figure 1. SystemC TLM confusing error 

message example one 

 This error is due to a misplaced instantiation. To 
solve this problem, changing the location of the 

instantiation to the main module is enough. Figure 2 

shows another example of the confusing error 

message which refers to the port, relates to the error 

by its number and do not refer to its name to find out 

the name of the port and we should debug the code 

line by line. 
 

 
Error: (E112) get interface failed: port is 

not bound: port 'full1.port_2' (sc_in) 

In file: C:\Program Files\Microsoft Visual 

Studio\VC98\systemc-

2.1.v1\src\sysc\communication\sc_port.cpp:196 

 

Figure 2. SystemC TLM confusing error 

message example two 

4 TLM_FIFO Detailed Characteristics 

Mapping by Ada 

 Since all of TLM channel structures can be 

described based on FIFO, we have started developing 

TLM channels from TLM_FIFO channel as 

described in our previous works‎[3]. All of these 

descriptions are based on functionality of the 

channel.  

4.1 TLM_FIFO Special Characteristics 

 TLM_FIFO has some special characteristics that 
all are covered in the Ada implementation version. 

These characteristics are as follows‎[7]: 

 

 Generic package 

 Generic type 

 Generic size 

 Concurrency 

 Blocking/non-blocking transport capability 

 Export 

 Multiple reader/writer 

 Multiple instances 

 

 Some of these characteristics which use specific 

Ada constructs are explained in the following sub-

sections. 

 
4.1.1 Generic Type 
 Generic in Ada is similar to template in C++. The 

data which is transferred via TLM channels could be 

of different types from basic data types to various 

record types (user defined types). There are different 

kinds of generics in Ada and each of them is 

appropriate to satisfy some specific requirements 

‎[16]‎[14]. Figure 3 shows how we have generic type 

in TLM_FIFO element type. We have used one that 

has few limitations for the data type (for example 

limited types would not be allowed for a private 

generic formal parameter). 

 
 

generic type FIFO_Element is  private; 

package FIFO is… 

 

Figure 3. Generic type FIFO 

 

4.1.2 Generic Size 
 The size in TLM channels could be changed based 

on the requirements. To have arbitrary size 

TLM_FIFO channels, two solutions are to use 
dynamic and static memory allocation approach.  

As it is obvious, using static memory allocation is 

faster and would lessen development cost. Using 

dynamic memory allocation implies access types in 

Ada language constructs which are the same as 

pointers in C++ (they are similar especially in 

purpose, but there are very significant differences by 

design). Implementing TLM_FIFO using access type 

referrers to link-list implementations and 
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modification operations. Figure 4 shows Ada access 

types used in implementing TLM_FIFO. 

 
 

type FIFO_Node; 

type FIFO_Pointer is access FIFO_Node; 

type FIFO_Node is record 

 Data : FIFO_Element; 

 Link : FIFO_Pointer; 

end record; 

 

Figure 4. Unlimited size FIFO using dynamic 

memory allocation 

  

 With static memory allocation, we should put the 

size in generic part of the package such that it could 

be determined in instantiation step (Figure 5). 

Implementing TLM_FIFO with static memory 

allocation implies a cyclic buffer construct which is a 

static array type with round FIFO modification 

operations indeed‎[17]. 

 
 

generic Size: natural; 

type FIFO_Element is  private; 

package FIFO is… 

 

Figure 5. Generic size FIFO 

4.1.3 Concurrency 
 Hardware models have concurrency as their 
inherent feature. The basic concurrency unit in the 

Ada language is the task, as mentioned earlier 

‎[18]‎[22]. We have used this language construct to 

have concurrent hardware channels at transaction 

level modeling such as TLM_FIFO. The task type 

specification which adds concurrency to the FIFO 

package is illustrated in the following Figure 6. As it 

can be seen the task type FIFO_Task has three entries 

named Add, Remove and Stop the name of which 
shows their functionalities. A variable called 

TLM_FIFO from FIFO_Task type has been defined 

to refer to as a TLM_FIFO channel in implementing 

communications. 

 
 

task type FIFO_Task is 

 entry Add; 

 entry Remove; 

 entry Stop; 

end FIFO_Task; 

TLM_FIFO : FIFO_Task; 

 

Figure 6. FIFO_Task specification 

4.1.4 Blocking/Non-blocking 
 One of the key concepts in TLM is supporting 

blocking and non-blocking modes of communication. 

In blocking, when the sender adds the input data 
packet to the communication channel the control of 

the channel is given to the slave to remove the 

desired data packet and give back the control of the 

communication channel to the master. Therefore, 

each add must be followed by a remove action and 

vice versa (Figure 7). In non-blocking mode of 

communication, each of the modules that are bound 
to a channel could call its method for the channel 

without keeping track of the other module actions. 

Therefore, any add and remove action could be done 

independently. The Ada language task construct have 

potentials to implement these concepts. As it is 

mentioned in our previous works‎[3], in the task body 

we could have select and accept blocks and each 

select block could contain several accept blocks. 

Each accept block could be separated by an or 
keyword from the other one. This kind of task 

implementation is called selective waiting. If we put 

or between different accepts (Add and Remove in 

Figure 8) the messages are processed in the order that 

they are received with no predefined priority ‎[18]. 

 
 
task body FIFO_Task_B is 

begin 

 loop 

  select 

   accept Add do 

    Add_FIFO; 

   end Add; 

  --or 

   accept Remove do 

    if Empty_FIFO=false then 

     Rem_FIFO; 

    end if; 

   end Remove;  

  end select; 

 end loop; 

end FIFO_Task_B; 

 

Figure 7. Blocking communication in 

TLM_FIFO 

 

 
task body FIFO_Task is 

begin 

 loop 

  select 

   accept Add do 

    Add_FIFO; 

   end Add; 

 

  or 

 

  when Empty_FIFO=false => --guard 

   accept Remove do 

    Rem_FIFO; 

   end Remove; 

  end select; 

 end loop; 

end FIFO_Task; 
 

Figure 8. Non-blocking communication in 

TLM_FIFO 
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 Figure 7 and Figure 8 respectively show blocking 

and non-blocking task bodies which implement these 

modes of communication in TLM_FIFO. Notice that 

in both tasks we have used loop statement‎[20]. 
 

4.1.5 FIFO Package Specification 
 It is obvious that a package in Ada has 

specification and body which recall entity and 

architectures of VHDL designs‎[15]. The specification 

of the FIFO package with dynamic and static 

memory allocation is depicted in Figure 9 and Figure 

10 respectively. Actually these packages both have  

task types that discussed earlier in sections ‎4.1.3, 

‎4.1.4  and various procedures that introduced in our 

previous papers‎[3]‎[10]. 

 
 
generic type FIFO_Element is private; 

package FIFO is 

 input : FIFO_Element; 

 output: FIFO_Element; 

 type FIFO_Node is private; 

  ... 

 procedure Add_FIFO; 

 ... 

  private 

  type FIFO_Channel is access FIFO_Node; 

 type FIFO_Node is record 

  Data : FIFO_Element; 

  Link : FIFO_Channel; 

 end record; 

 Head : FIFO_Channel; 

  ... 

end FIFO; 

 

Figure 9. FIFO package specification using 

dynamic memory allocation 

 

 
generic Size: natural; 

type FIFO_Element is private; 

package FIFO is 

 type FIFO_Type is array (natural range <>) 

OF FIFO_Element; 

  input : FIFO_Element; 

 ...  
  procedure Add_FIFO; 

  ... 

  private 

  FIFO : FIFO_Type(0..Size); 

 R, W : integer := 0; 

 Count : integer:=0; 

  ... 

end FIFO; 

 

Figure 10. FIFO package specification using 

static memory allocation 

4.1.6 Instantiating a New FIFO Channel 
 Putting generic keyword at the beginning of the 

FIFO package in addition to have generic size and 

type would give FIFO package one more useful 

feature and it is the ability to have multiple instances 

of that channel as a generic package. Getting instance 

of the FIFO package which uses dynamic and static 

memory allocation is shown in Figure 11 and Figure 

12 respectively. The only difference between the 

instantiation in Figure 12 with the previous one in 
Figure 11 is that we can determine the size of channel 

besides its element types. In Figure 12 

FIFO_Channel1 is instantiated by name and 

FIFO_Channel2 is instantiated by position. 

 
 

 
with FIFO; 

package FIFO_Channel is new FIFO(Packet); 

 

Figure 11. Instantiating a new FIFO channel 

with dynamic memory allocation 

  

 
with FIFO; 

 

package FIFO_Channel1 is new FIFO (Size=>8, 

FIFO_Element=>Packet); 

package FIFO_Channel2 is new FIFO (8, 

Packet); 

 

Figure 12. Instantiating a new FIFO channel 

with static memory allocation 

4.1.7 Export Concept 
 TLM communication interfaces are implementable 

in channels or in target module using export 

concept‎[6]‎[7]. Figure 13 shows the concept of 

exportability in an implemented example in Ada. 

Implementation of a master-slave architecture using 

exported TLM_FIFO channel is shown in section 

‎4.2.2. 

 

 
Figure 13. Export concept for TLM_FIFO 

channel 

4.1.8 Multiple Reader/Writer 
 The Ada TLM_FIFO channel can have multiple 

reader/writer(s) like the standard SystemC TLM 

FIFO‎[7]. Figure 14 shows this concept. 

 Our TLM_FIFO can have this capability by 

defining various master and slave tasks that produce 

and consume data via one TLM_FIFO channel this 

scenario is illustrated in Figure 15.  
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Figure 14. Multiple reader/writer for a 

TLM_FIFO channel 

 
with FIFO_Channel; 

procedure Multiple_Reader_Writer_TLM_FIFO is 

 task Master1 is 

  entry Start; 

  entry Stop; 

 end Master1; 

  ... 

  task Master2 is 

  ... 

 task  Slave1 is  

  ... 

  task  Slave2 is 

  ... 

 task Simulation is 

 ...  

task body Simulation is 

   begin 

      accept Start; 

      loop 

         select 

         accept Stop; 

            exit; 

         else 

            Master1.Start; 

            Master2.Start; 

            ... 

            Slave1.Start; 

            ... 

         end select; 

         delay 0.0; 

      end loop; 

      --stops all the tasks 

      Master1.Stop; 

      Master2.Stop; 

      ... 

      Slave1.Stop; 

      ... 

   end Simulation; 

begin 

   Simulation.Start; 

   delay 1.0; 

   Simulation.Stop; 

end Multiple_Reader_Writer_TLM_FIFO; 

Figure 15. Multiplr_Reader_Writer_TLM_FIFO 

procedure 

4.2 TLM Master-Slave Architectures 

Using TLM_FIFO 

In order to show how TLM_FIFO channel is 

used for communication between modules, two 

different architectures for a master-slave system is 

implemented using SystemAda. In the first 

architecture, Master and Slave tasks communicate 

through an external TLM_FIFO channel, while in the 

second architecture the channel is defined inside the 

Slave task in order to show the concept of 

exportability for SystemAda channels. 

4.2.1 Master-Slave Architecture Using 

External TLM_FIFO Channel 
 The master-slave architecture is shown in Figure 

16. The two modules use the TLM_FIFO channel for 

their communication. They use method calls to the 

TLM_FIFO channel for their communication. 
 

 
Figure 16. TLM_Master_Slave architecture 

using TLM_FIFO channel‎[3] 

 The body of the procedure which implements the 

functionality of this architecture is shown in Figure 

17. This procedure consists of three tasks‎[9] called 

Master, Slave and Simulation. Each task has two 

entries, Start and Stop, which control the entrance 

and exit of the program flow to the corresponding 

task.  

 
 

with FIFO_Channel; 

procedure TLM_Master_Slave_FIFO is 

 

 task  Master is 

  entry Start; 

  entry Stop; 

 end Master; 

 

 task  Slave is 

  entry Start; 

  entry Stop; 

 end Slave; 

 

 task Simulation is 

  entry Start; 

  entry Stop; 

 end Simulation; 

 ...  

Figure 17. TLM_Master_Slave_FIFO procedure 

 When Start entry of the Master task is activated, a 

packet is read from an input file and is put into the 

TLM_FIFO. On the Slave side, on the other hand, a 
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packet is retrieved from the head of the TLM_FIFO 

when Start entry is activated for Slave task‎[3]. 

4.2.1.1 Simulation Task 

 As it is shown in the following figures (Figure 18, 

Figure 19), in the main block of the procedure the 

Simulation task starts its processing and stops from 

working after a predetermined delay of 1.0 second. 

This task has the control role for simulation process 

of the Master and Slave tasks. 

 
 
begin 

 Simulation.Start; 

 delay 1.0; 

 Simulation.Stop; 

end TLM_Master_Slave_FIFO; 

 

Figure 18. TLM_Master_Slave_FIFO 

procedure main part 

 
Figure 19. Simulation process of 

TLM_Master_Slave architecture using 

TLM_FIFO 

 

1: task body Simulation is 
2: begin 
3:  accept Start; 

4:   loop 

5:    select 

6:     accept Stop; 

7:      exit; 

8:     else 

9:      Master.Start; 

10:     Slave.Start; 

11:   end select; 

12:  end loop; 

13: Master.Stop; 

14: Slave.Stop; 

15: end Simulation; 

 

Figure 20. Simulation task body 

 Figure 20 shows the body of Simulation task. 

After accepting Start message, at line 3 while no Stop 

message is received, the Start message is sent to 

Master and Slave tasks (lines 9 and 10). As soon as 

accepting Stop message by Simulation task at line 6, 
the exit command executes and exits the loop. 

Afterwards, Stop messages are sent to Master and 

Slave modules (lines 13, 14).  
 

4.2.2 Master-Slave Architecture Using 

Exported TLM_FIFO Channel 
 A master-slave architecture using exported 

TLM_FIFO channel is shown in Figure 13. In this 

architecture, the channel is defined inside the Slave to 

show the concept of exportability.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 21. TLM_Master_Slave_FIFO_Ex 

procedure for exported channel 

 Implementation of this architecture is similar to 

the previous one in that the functionality of the 

design is defined through a procedure which consists 

of the tasks Master, Slave and Simulation. However, 

the implementation of the tasks is slightly different 

from the previous one. The body of the procedure 

which implements the functionality of this 

architecture is shown in Figure 21. Each task has two 

entries, Start and Stop, except for the Slave task. 
Slave task has an entry called Send instead of Start 

entry. Send entry has an argument called Pack which 

is of type Packet. Type Packet defines the type of the 

elements of the TLM_FIFO. 

 The body of slave task is shown in Figure 22. 

Because in this architecture the TLM_FIFO is moved 

inside the Slave task, Master task needs to call an 

entry of Slave task in order to insert the input data 

into the TLM_FIFO. The Send entry is defined for 

this purpose (line 5). There is an infinite loop which 

contains a selective accept statement. Each time 

through this loop the task checks to see if either Send 
or Stop has been called (lines 5 and 8). If Stop has 

with FIFO_Channel; 

procedure TLM_Master_Slave_FIFO_Ex is 

 
 task  Master is 

  entry Start; 

  entry Stop; 

 end Master; 

 
 task  Slave is 

  entry Send(Pack: in Packet); 

  entry Stop; 

 end Slave; 

 

 task Simulation is 

  entry Start; 

  entry Stop; 

 end Simulation; 

  ... 

begin 

 Simulation.Start; 

 delay 1.0; 

 Simulation.Stop; 

end  TLM_Master_Slave_FIFO_Ex; 
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been called the exit command is executed, 

terminating the loop. If Send has been called, input of 

Send entry, i.e. Pack, is passed as input to 

TLM_FIFO and then is put to the TLM_FIFO 

through calling Add entry of FIFO_Task. Then, if the 

FIFO is not empty, a packet is get from the 
TLM_FIFO by calling Remove entry of FIFO_Task. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 22. Slave task body for exported channel 

 The body of Master task is shown in Figure 23. 

There is an infinite loop which contains a selective 
accept statement. Each time through this loop the task 

checks to see if either Start or Stop has been called 

(lines 8, 11).  If Stop has been called the exit 

command is executed, terminating the loop. If Start 

has been called, a packet is read from input file to 

Pack variable and then Send entry of Slave task is 

called for this packet. For more information about 

files in Ada see ‎[19]. 
 

 
 

 

 

 

 

 

 

 

 

Figure 23. Master task body for exported channel 

 Figure 24 shows the body of Simulation task. 

After accepting Start entry (line 3), the task enters an 

infinite loop in which the Stop entry is checked first. 

If Stop has been called, the loop terminates (line 6). 

Otherwise, Start entry of Master task is called and 

Master task starts its simulation (line 9). In contrast 

to the previous architecture, there is no need to call 

Send entry for the Slave module since Master module 
is responsible for calling Send entry of Slave task 

whenever a new data packet is ready to be written to 

TLM_FIFO. Upon calling Stop entry, the loop 

terminates and Stop entries for Master, Slave and 

TLM_FIFO tasks are called and simulation ends. 

 
1: task body Simulation is 
2:  begin 
3:  accept Start; 

4:   loop 

5:    select 

6:     accept Stop; 

7:      exit; 

8:     else 

9:      Master.Start; 

10:   end select; 

11:  end loop; 

12:  Master.Stop; 

13:  Slave.Stop; 

14:  Pack_FIFO_ch.TLM_FIFO.Stop; 

15: end Simulation; 

 

Figure 24. Simulation task body for exported 

channel 

5 TLM Interfaces  

 Besides unidirectional/bidirectional, blocking/ 

non-blocking modes of transfer there are concepts in 

transaction level modeling called interfaces. These 

concepts are also patched in system level languages 

used today. But the interface concept is inherent in 

Ada2005 and we have used it to develop a basic 

communication interface. Since Ada is an object 

oriented language, the interface concept in it is a 

limited form of multiple inheritance (i.e. a type could 

inherit several interfaces)‎[21]. For example, in this 

case Communication interface has inherited from Put 

and Get interfaces. These interfaces could be 

implemented as user design methodology. They 

could be implemented as separated channels, i.e. 

TLM channels or they could be implemented in 

target modules which recall the export concept. 

5.1 The Unidirectional Blocking/ Non-

blocking Interfaces 

 The Put functionality in TLM is defined for the 

transaction which is sent from initiator to the target. 

The Put_Interface package has an interface type 

called Put_If that is passed to its abstract procedure 

called Put. Any package that inherits from this 

interface should implement this abstract procedure 

(Figure 25). 

1: task body Slave is 
2: begin 
3:  loop 
4:   select 
5:    accept Send(Pack: in Packet) do 

Pack_FIFO_Ch.Input := Pack; 

Pack_FIFO_Ch.TLM_FIFO.Add; 

6:    end Send; 

7:    or 

8:    accept Stop; 

exit; 

9:   end select; 
10:   if Pack_FIFO_Ch.Empty_Flag= false 

11:    Pack_FIFO_Ch.TLM_FIFO.Remove; 
12:   end if; 

13:  end loop; 
14: end Slave; 

 

1: task body Master is 
2: Input_File: file_type; 
3: Pack: Packet; 
4: begin 
5:  open (Input_File,in_file,"input"); 

6:  loop 

7:    select 

8:     accept Start do 

         if not end_of_file(Input_File) then 
           Get(Input_File,Pack); 

          Slave.Send(Pack); 
          end if; 
9:     end Start; 

10:      or 

11:      accept Stop; 

           exit; 
12:      end select; 
13:  end loop; 

14:  close(Input_File); 

15: end Master; 
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package Put_Interface is 

 type Put_If is interface; 

 procedure Put(Item:in Put_If) is abstract; 

end Put_Interface; 

 

Figure 25. TLM Put interface 

 The Get functionality is defined for the transaction 

which is sent from target to the initiator. The 

Get_Interface package contains an interface type 

called Get_If. This interface type is an argument of 

the Get abstract procedure which should be 

implemented by modules that inherit from this 

interface (Figure 26). 

 
package Get_Interface is 

 type Get_If is interface; 

 procedure Get(Item:out Get_If) is abstract; 

end Get_Interface; 
 

Figure 26. TLM Get interface 

 In the next step, we have defined a communication 
interface that inherits from Put and Get interfaces. 

This interface implicitly inherits the Put and Get 

procedures and it is optional to put them in its 

package specification or not. A task interface is 

added to this package to be implemented where there 

is a need to synchronous interfaces and concurrency 

concepts which are the intrinsic features of hardware 

communications (Figure 27). 

 
with Put_Interface, Get_Interface; 

use Put_Interface, Get_Interface; 

 

package Communication_Interface is 

 

 type Communication_If is interface and 

Put_If and Get_If; 

 

 --procedure Put(Item: in Communication_If) 

is abstract; 

 --procedure Get ... 

 

 type Communication_Task_If is task 

interface; 

end Communication_Interface; 
 

Figure 27. Communication_Interface 

package specification 

 In Figure 28, the package specification of the 

implementation of this interface is shown. The type 

which is transferred during this communication is 

generic and is called Communication_Element 
(line3). The Communication_If type is specified here 

through declaring a new type called 

Communication_Comp. This type extends the 

Communication_If type with a record type (lines 7, 8, 

9). This package should implement the abstract 

procedures which have inherited (Put and Get). The 

task interface inherited from above package is 

implemented here at line 12 (the task entries 

implements the functionality of the Put and Get 

procedures). 

 

1: with Communication_Interface; 
2: use Communication_Interface; 
 

3: generic 
4: Size : natural; 
5: type Communication_Element is private; 
 

6: package Communication_If_Im is 
7:  type Communication_Comp is new 

Communication_If with record 

8:   Data: Communication_Element; 

9:  end record; 

10: procedure Put(Item:in Communication_Comp); 

11: procedure Get(Item:out Communication_Comp); 

12: task type Communication_Task is new 

Communication_Task_If with 

13:  entry P(Item: in Communication_Comp); 

14:  entry G(Item: out Communication_Comp); 

15: end Communication_Task; 

16: task type Communication_Task_B is new 

Communication_Task_If with 

17:  ... 

18:  Com_Buffer_Array: array (0..Size) of 

Communication_Comp; 

19:  Input: Communication_Comp; 

20:  Output: Communication_Comp; 

21:  Com_Task: Communication_Task; 

22:  Com_Task_B: Communication_Task_B; 

23:   ... 

 

24:end Communication_If_Im; 

 

Figure 28. Communication_If_Im package 

specification 

 Implementation of this package defines two modes 

of communication: blocking and non-blocking. The 

method used here to implement these transfer modes 

is the same as before by modifying tasks bodies. 

Figure 29 shows instantiating this communication 

interface which specifies the communication element 
type. 

 

 
with Communication_If_Im; 

 

package Communication is new 

Communication_If_Im(1,integer); 
 

Figure 29. Instantiating a new 

Communication_If_Im 

 Figure 30 shows an example which uses this 

communication interface to have a simple 

unidirectional blocking interface. 
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with Communication; 

use Communication; 

... 

procedure Master_Slave_Communication is 

 ... 

 task Slave is 

  entry Start; 

 end Slave; 

 

 task body Slave is 

 begin 

  loop 

   accept Start do 

    Com_Task.G(Output); 

    … 

   end Start; 

  end loop; 

 end Slave; 

 

 task Master is 

 end Master; 

 

 task body Master is 

 begin 

  For i in 1..10 loop 

   Input.Data:=i; 

   Com_Task.P(Input); 

   Slave.Start; 

  end loop; 

 end Master; 

 begin 

 ... 

end Master_Slave_Communication; 

 

Figure 30. Master_Slave_Communication 

procedure 

 

5.2 The Bidirectional Blocking/ Non-

blocking Interfaces 

 Figure 31 shows the main members of 

Transport_Interface. The TLM bidirectional 
blocking/non-blocking interface consists of two 

one_directional interface type called Req_If  and 

Res_If. As their names implies, one of them is for 

request transactions and the other one is for response 

transactions. 
 

 
 

with Communication_Interface; 

use Communication_Interface; 

 

package Transport_Interface is 

 type Req_If is interface AND 

Communication_If; 

 type Res_If is interface AND 

Communication_If; 

 type Transport_Task_if is task interface; 

end Transport_Interface; 

 

Figure 31. Transport_Interface package 

specification 

 The main members of the specification package of 

the implementation of Transport_Interface are shown 

in Figure 32. 

 
 

with Transport_Interface; 

use Transport_Interface; 

generic 

Size : natural; 

type Req_Element is private; 

type Res_Element is private; 

package Transport_If_Im is 

 type Req_Com is new Req_If with record 

  Data: Req_Element; 

 end record; 

 type Res_Com is new Res_If with record 

  … 

 end record; 

 procedure Put(Item : in Req_Com); 

 procedure Get(Item : out Req_Com); 

 procedure Put(Item : in Res_Com); 

 procedure Get(Item : out Res_Com); 

 task type Transport_Task is new 

Transport_Task_If with 

  entry Preq(Item : in Req_Com); 

  entry Greq(Item : out Req_Com); 

  entry Pres(Item : in Res_Com); 

  entry Gres(Item : out Res_Com); 

 end Transport_Task; 

 task type Transport_Task_B is new 

Transport_Task_If with 

  … 

 end Transport_Task_B; 

 Req_Buffer: array (0..Size) of Req_Com; 

 Res_Buffer: array (0..Size) of Res_Com; 

 … 

end Transport_If_Im; 

 

Figure 32. Transport_If_Im package 

specification 

The following figure (Figure 33) shows how to 

instantiate a new Transport_If_Im. 

 
 

with Transport_If_Im; 

package Transport is new 

Transport_If_Im(5,integer,integer); 

 

Figure 33. Instantiating a new Transport_If_Im 

6 Experimental Results 

 In order to compare the simulation time of TLM 

channels implemented using SystemC and Ada, we 

need an appropriate platform. The properties of the 
platform we have used are as follows: 

 Operating system: Microsoft Windows XP 

Professional, 2002 version, Service pack3 

 System: Intel Pentium 4, CPU 2GHz, RAM 

1GB 

 Compiler: Gnat GPL 2007 for Ada, 

Microsoft Visual Studio (.Net Frame Work 

2005) For SystemC 
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 The details of the simulations performed are 

presented in the following sections. 

6.1 Ada and SystemC Simulation Time 

Comparison for TLM_FIFO Channel 

 Ada has some inherent structural advantages over 

SystemC. But to observe if Ada has simulation time 

penalty, we have done several simulation time 

comparisons between Ada and SystemC 

implementations of TLM_FIFO channel. According 

to the diagram shown in Figure 34 based on Table 1, 

the speed of TLM_FIFO in both models is not 

equivalent. All in all, we have 81.41 percent speed 

optimization in our Ada models compared to 

SystemC implementations, which is surprising and it 
shows that there should be a specific operation in 

Ada which is much faster than its equivalent 

SystemC model.  

 

Table 1.TLM_FIFO average simulation time 

in SystemAda and SystemC for variable packet 

numbers (using I/O files) 

Packet 

number Ada SystemC 

Simulation 

time ratio  
Optimization 

(%) 

10000 0.5056 2.8236 5.584652 82.09378 

20000 0.9966 5.34 5.358218 81.33708 

30000 1.475 8.025 5.440678 81.61994 

40000 2.051 10.8228 5.276841 81.04927 

50000 2.4436 12.8328 5.251596 80.95817 

average     5.382397 81.41165 

 
 

 

 
Figure 34. Ada and SystemC  TLM_FIFO channel 

simulation time (using I/O files) 

After doing the above experiments we have 

determined that the operation should be interacting to 
I/O files so we have omitted this operation and 

restarts the experiments again. As the following 

results shows (Table  2  , Figure 35) there is also an 

optimization about 58.35 percent in simulation speed 

in contrast to SystemC models. 

At this time we have no concern about simulation 

speed at TLM level in SystemAda but if by the 

passage of time the speed becomes our problem there 

is no worry again since we have no speed penalty in 
Ada compared to SystemC. Maybe this speed up is 

because of the platform or maybe this speed up 

would not be seen for the implementation of other 

channels so in our next work we are going to 

implement other TLM channels based on our FIFO 

channel and we also try to change the platform of the 

experiments to see if there would be a time penalty 

for Ada or not. 
 

Table  2 . TLM_FIFO average simulation time 

in SystemAda and SystemC for variable packet 

numbers (using no I/O files) 

Packet 

number Ada SystemC 

Simulation 

time ratio  
Optimization 

percent 

10000 0.3396 0.794 2.338045 57.22922 

20000 0.7118 1.625 2.282945 56.19692 

30000 1.0256 2.5314 2.468214 59.48487 

40000 1.4386 3.614 2.512165 60.19369 

50000 1.6988 4.1126 2.420885 58.6928 

Average     2.404451 58.3595 

 

 
Figure 35. Ada and SystemC TLM TLM_FIFO 

channel simulation time (using no I/O files) 

7 Conclusion 

 Digital systems and system level modelling of 

hardware systems are too complex today to the extent 

that Hardware Description Languages such as VHDL 

or Verilog are no longer efficient for modelling them. 

In order to satisfy the requirements of modelling such 

systems, new languages have emerged such as 

SystemC, HandelC and CatapultC which perform the 

design at higher levels of education. Ada is another 

language which has several advantages over 
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commonplace system level languages like SystemC. 

Therefore, we have examined Ada to model a 

complete system at transaction level. A number of 

packages have been developed using Ada for 

transaction level modelling. We refer to these 

packages and form of Ada language used here as 
SystemAda. In an earlier work, we have shown that 

Ada has a link to RTL and we have implemented a 

TLM_FIFO channel. Here we have proved the 

concept of TLM in Ada by improving our 

TLM_FIFO channels with its detailed characteristics 

proof and presenting TLM interfaces concepts and 

modelled a simple architecture with this new and 

detailed channel for our simulation speed 

experiments. Several experiments have been 

conducted to compare the efficiency of SystemAda 

versus SystemC TLM. Experimental results show 

that there is no simulation time overhead when using 
SystemAda as compared to SystemC TLM. 
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Abstract. This article presents some new types of tasking deadlocks concerning the new syn-
chronization waiting relations defined in Ada 2012.

1 Introduction

A tasking deadlock in a concurrent Ada program is a situation where some tasks form
a circle of synchronization waiting relations at some synchronization points that cannot
be resolved by the program itself (including the behavior of other tasks), and hence can
never proceed with their computation by themselves [2, 3]. To deal with Ada tasking
deadlocks, it is indispensable to identify all types of tasking deadlocks.

A synchronization waiting relation between tasks is a such relation that to syn-
chronize with other task or tasks, a task is blocked until the synchronization takes place,
unless the synchronization waiting has a deadline. Cheng proposed a way to completely
classify all tasking deadlocks by different combinations of various synchronization wait-
ing relations between tasking objects [2, 3]. According to this way of classification, new
combinations of synchronization waiting relations concerning new synchronization wait-
ing relations may lead to new types of tasking deadlocks.

Ada 2012 defined four new operations that cause a situation where a task is
blocked, i.e., procedure Enqueue and Dequeue in the package Synchronized Queue
Interfaces, procedure Wait For Release in the package Synchronous Barriers and pro-
cedure Suspend Until True And Set Deadlines in the package Ada.Synchronous Task
Control.EDF. Since the operations may involve synchronization waiting relations among
tasks such that they form a tasking deadlock, an Ada 2012 program using the operations
may have some tasking deadlocks that are not identified until now.

In this article, we present some examples of new tasking deadlocks concerning the
new synchronization waiting relations defined in Ada 2012.

2 Synchronization Waiting Relations in Ada 2012 Programs

Ada 95 defines eight types of synchronization waiting relations, i.e., activation wait-
ing relation, finalization waiting relation, completion waiting relation, acceptance wait-
ing relation, entry-calling waiting relation, protection waiting relation, protected-entry-
calling waiting relation, and suspension waiting [1, 4–6].
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In Ada 2005, there is no new synchronization waiting relations. There are some
changes for the tasking and real-time facilities in Ada 2005. For instance, one major ex-
tension is the ability to combine the interface feature with the tasking model. There are
also many additional predefined packages in the Real-Time Systems annex concerning
matters such as scheduling and timing [7]. The changes have no effect on synchronization
waiting relations which have been defined. They also do not cause new synchronization
waiting relations.

Ada 2012 defined four new operations that cause a situation where a task is
blocked. The three of the four operations, i.e., the enqueue waiting relation and the
dequeue waiting relation defined in Annex A.18.27 and the barrier-release waiting rela-
tion defined in Annex D.10.1, may cause the new synchronization waiting relations. The
other, i.e., procedure Suspend Until True And Set Deadlines defined in Annex D.10, do
not cause new synchronization waiting relation.

Annex A.18.27 (The Generic Package Containers.Synchronized Queue Interfaces)
provides interface type Queue and a set of operations for that types. A queue type
that implements this interface is allowed to have a bounded capacity. If a queue object
has a bounded capacity and the number of existing elements in the queue equals the
capacity, then a procedure call for Enqueue will result in that the task calling Enqueue is
blocked until storage becomes available. Enqueue waiting is that a task calling Enqueue
is blocked when a queue in implemented Synchronized Queue Interfaces is full until
another task calls Dequeue for this queue. If a queue is empty, then a procedure call for
Dequeue will result in that the task calling Dequeue is blocked until an item becomes
available. Dequeue waiting is that a task calling Dequeue is blocked when a queue in
implemented Synchronized Queue Interfaces is empty until another task calls Enqueue
for this queue. Enqueue waiting may be resolved by other task calling Dequeue. If no
task has the possibility to resolve enqueue waiting, a task in enqueue waiting state
will be blocked forever and may be involved with a tasking deadlock. Dequeue waiting
may be resolved by other task calling Enqueue. If no task has the possibility to resolve
dequeue waiting, a task in dequeue waiting state will be blocked forever and may be
involved with a tasking deadlock.

Annex D.10.1 (Synchronous Barriers) provides a language-defined package to syn-
chronously release a group of tasks after the number of blocked tasks reaches a spec-
ified count value. Each procedure calling Wait For Release results in that the tasks
calling Wait For Release is blocked until the number of blocked tasks associated with
the Synchronous Barrier object is equal to threshold, when all blocked tasks are re-
leased. Barrier-release waiting is that tasks calling Wait For Release are blocked by
other possible tasks calling it until the number of blocked tasks associated with the
Synchronous Barrier object is equal to threshold. If the needed number of all tasks
which plan to call Wait For Release reaches to threshold, they can resolve barrier-
release waiting. If any tasks can not have possibility to call Wait For Release, a task in
barrier-release waiting state will be blocked forever and may be involved with a tasking
deadlock.

Annex D.10 (Synchronous Task Control) defines procedure Suspend Until True
And Set Deadline. A procedure call for Suspend Until True And Set Deadline may re-
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sult in that the calling task is blocked temporally. Hence, the call does not cause any
synchronization waiting relation.

3 Examples of Tasking Deadlocks in Ada 2012 Programs

This section shows six examples. Each example has an Ada 2012 code and its Task-Wait-
For Graph. All of the examples have tasking deadlocks with the new synchronization
waiting relations, however they are not all programs including tasking deadlocks. Four
examples have tasking deadlocks with the new synchronization waiting relations. Other
one example has two kinds of tasking deadlocks with new synchronization waiting rela-
tions, but each of the tasking deadlocks occurs exclusively. Another example may have
three kinds of tasking deadlocks with new synchronization waiting, but they each of the
tasking deadlocks occur exclusively, otherwise any of them do not occur.

3.1 Task-Wait-For Graph

A Task-Wait-For Graph (TWFG for short) is a kind of arc-classified digraph to repre-
sent tasking waiting state in an execution of an Ada program [3]. The TWFG explicitly
represents various types of synchronization waiting relations in an execution of an Ada
program. The notion of TWFG was originally proposed for classification and detection
of tasking deadlocks in Ada 83 programs [2, 3] and was extended to deal with task-
ing deadlocks in Ada 95 programs [4]. In a TWFG, vertices indicate tasking objects.
A tasking object in an execution state of a concurrent Ada 2012 program is any of
the following: a task whose activation has been initiated and whose state is not ter-
minated, a block statement that is being executed by a task, a subprogram that is
being called by a task, a protected subprogram that is being called by a task, a pro-
tected object on which a protected action is undergoing, and a suspension object that
is being waited by a task. Arcs indicate synchronization waiting relations which are
binary relations between tasking objects. In a TWFG of a programs with Ada 2012,
they are 11 types of arcs: activation waiting arc, finalization waiting arc, completion
waiting arc, acceptance waiting arc, entry-calling waiting arc, protection waiting arc,
protected-entry-calling waiting arc, suspension waiting arc, enqueue waiting arc, de-
queue waiting arc, and barrier-release waiting arc, respectively, corresponding to an
activation waiting relation, finalization waiting relation, completion waiting relation,
acceptance waiting relation, entry-calling waiting relation, protection waiting relation,
protected-entry-calling waiting relation, suspension waiting relation, enqueue waiting
relation, dequeue waiting relation, and barrier-release waiting relation.

Here the affixing characters show types of arcs. →Act, →Fin, →Com, →Acc, →EC ,
→Pro, →PEC , →Sus, →Enq, →Deq, and →BR denote activation waiting arc, finaliza-
tion waiting arc, completion waiting arc, acceptance waiting arc, entry-calling waiting
arc, protection waiting arc, protected-entry-calling waiting arc, suspension waiting arc,
enqueue waiting arc, dequeue waiting arc, barrier-release waiting arc, respectively.
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3.2 Example Program 1: Tasking Deadlocks with Enqueue Waiting
Relations

This program has enqueue waiting relations. This two enqueue waiting relations form
a cycle that cannot be resolved by the program itself. Enqueue waiting cycle in this
program are as follows:

T1 →Enq T2 →Enq T1

Example Program 1

with Ada.Containers.

Synchronized_Queue_Interfaces;

with Ada.Containers.

Bounded_Synchronized_Queues;

with Ada.Text_IO;

use Ada.Containers;

use Ada.Text_IO;

procedure dl1 is

subtype Queue_Element is String (1 .. 0);

package String_Queues is

new Synchronized_Queue_Interfaces (

Element_Type => Queue_Element);

package S_Queues is

new Bounded_Synchronized_Queues (

Queue_Interfaces => String_Queues,

Default_Capacity => 1);

Q1, Q2, Q3 : S_Queues.Queue;

Element1 : Queue_Element

task T1;

task T2;

task T3;

task body T1 is

begin

delay 1.0;

loop

Q2.Enqueue ("");

Q1.Dequeue (Element1);

end loop;

end T1;

task body T2 is

begin

delay 1.0;

loop

Q2.Dequeue (Element1);

Q1.Enqueue ("");

Q2.Dequeue (Element1);

Q3.Enqueue ("");

end loop;

end T2;

task body T3 is

begin

delay 1.0;

loop

Q2.Enqueue ("");

Q3.Dequeue (Element1);

end loop;

end T3;

begin

Q1.Enqueue ("");

Q2.Enqueue ("");

Q3.Enqueue ("");

end dl1;

T1 T2
Enq

Enq

T3

Deq

dl1

Fin Fin

Fin

Waiting relation

Subprogram or Block statement

Task

Fig. 1. TWFG of example program 1
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3.3 Example Program 2: Tasking Deadlocks with Dequeue Waiting
Relations

This program has dequeue waiting relations. This two dequeue waiting relations form
a cycle that cannot be resolved by the program itself. Dequeue waiting cycle in this
program are as follows:

T1 →Deq T2 →Deq T1

Example Program 2
with Ada.Containers.

Synchronized_Queue_Interfaces;

with Ada.Containers.

Bounded_Synchronized_Queues;

with Ada.Text_IO;

use Ada.Containers;

use Ada.Text_IO;

procedure dl2 is

type Queue_Element is new String(1..0);

package String_Queues is

new Synchronized_Queue_Interfaces

(Element_Type => Queue_Element);

package String_Priority_Queues is

new Bounded_Synchronized_Queues

(Queue_Interfaces => String_Queues,

Default_Capacity => 1);

Q1, Q2, Q3 : String_Priority_Queues.Queue;

El1 : Queue_Element;

task T1;

task T2;

task T3;

task body T1 is

begin

loop

Q2.Dequeue (El1);

Q1.Enqueue ("");

end loop;

end T1;

task body T2 is

begin

loop

Q2.Enqueue ("");

Q1.Dequeue (El1);

Q2.Enqueue ("");

Q3.Dequeue (El1);

end loop;

end T2;

task body T3 is

begin

loop

Q2.Dequeue (El1);

Q3.Enqueue ("");

end loop;

end T3;

begin

null;

end dl2;

T1 T2
Deq

Deq

T3

Enq

dl2

Fin Fin

Fin

Waiting relation

Subprogram or Block statement

Task

Fig. 2. TWFG of example program 2
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3.4 Example Program 3: Tasking Deadlocks with Barrier-Release Waiting
Relations

This program has barrier-release waiting relations. This two barrier-release waiting
relations form a cycle that cannot be resolved by the program itself. Barrier-release
waiting cycle in this program are as follows:

T1 →BR T2 →BR T1

Example Program 3

pragma Task_Dispatching_Policy

(Fifo_Within_Priorities);

with System;

with Ada.Synchronous_Barriers;

with Ada.Synchronous_Task_Control;

with Ada.Text_IO;

use Ada.Synchronous_Barriers;

use Ada.Text_IO;

procedure dl3 is

Number_Of_Tasks : constant := 2;

BO1, BO2, BO3 :

Ada.Synchronous_Barriers.Synchronous_Barrier

(Number_Of_Tasks);

Notif : Boolean := False;

task T1;

task T2;

task T3;

task body T1 is

begin

loop

Wait_For_Release (BO2, Notif);

Wait_For_Release (BO1, Notif);

end loop;

end T1;

task body T2 is

begin

loop

Wait_For_Release (BO2, Notif);

Wait_For_Release (BO1, Notif);

Wait_For_Release (BO3, Notif);

end loop;

end T2;

task body T3 is

begin

loop

Wait_For_Release (BO2, Notif);

Wait_For_Release (BO3, Notif);

end loop;

end T3;

begin

null;

end dl3;

T1 T2
BR

BR

T3

BR

dl3

Fin Fin

Fin

Waiting relation

Subprogram or Block statement

Task

Fig. 3. TWFG of example program 3
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3.5 Example Program 4: Tasking Deadlocks with All Synchronization
Waiting Relations

This program has 11 types of synchronization waiting relations. The synchronization
waiting relations form five cycles that cannot be resolved by the program itself. There-
fore, five tasking deadlocks must occur in this program. The five cycles of synchroniza-
tion waiting relations in this program are as follows:

T1 →Acc T4 →PEC V →Fin GET1 →EC T2 →Com T1

T1 →Acc T5 →Fin B →Fin T7 →Sus T2 →Com T1

T1 →Acc T5 →Fin B →Fin T8 →Deq T6 →Fin T9 →Fin GET2 →BR T2 →Com T1

T1 →Acc T5 →Fin B →Fin W →Pro V →Fin GET1 →EC T2 →Com T1

T4 →PEC V →Fin GET1 →EC T2 →Com T3 →Enq T4

Example Program 4

pragma Task_Dispatching_Policy

(Fifo_Within_Priorities);

with System;

with Ada.Containers

.Synchronized_Queue_Interfaces;

with Ada.Containers

.Bounded_Synchronized_Queues;

with Ada.Synchronous_Task_Control;

with Ada.Synchronous_Barriers;

with Ada.Text_IO;

use Ada.Synchronous_Task_Control;

use Ada.Synchronous_Barriers;

use Ada.Containers;

use Ada.Text_IO;

procedure dl4 is

type Queue_Element is new String(1..0);

package String_Queues

is new Synchronized_Queue_Interfaces

(Element_Type => Queue_Element);

package String_Priority_Queues

is new Bounded_Synchronized_Queues

(Queue_Interfaces => String_Queues,

Default_Capacity => 1);

Q1, Q2: String_Priority_Queues.Queue;

El : Queue_Element;

Number_Of_Tasks : constant := 2;

BO :

Ada.Synchronous_Barriers

.Synchronous_Barrier(Number_Of_Tasks);

Notif : Boolean := False;

type ITEM is new Integer;

task T1 is

entry E1;

end T1;

task T2 is

entry E2;

end T2;

task T3;

task T4;

S : Suspension_Object;

function GET1 return ITEM is

begin

T2.E2;

return 0;

end GET1;

function GET2 return ITEM is

begin

Wait_For_Release(BO, Notif);

return 0;

end GET2;

protected V is

procedure W (X : in ITEM);

entry R (X : out ITEM);

private

Var : ITEM := 0;

end V;

protected body V is

procedure W (X : in ITEM) is

begin

Var := X;

end W;

entry R (X : out ITEM) when True is

begin

X := GET1;

end R;

end V;
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task body T1 is

task T5;

task T6;

task body T5 is

begin

B : declare

task T7;

task T8;

task body T7 is

begin

Suspend_Until_True(S);

end T7;

task body T8 is

begin

Q2.Dequeue(El);

end T8;

Y : ITEM;

begin

V.W (Y);

end B;

T1.E1;

end T5;

task body T6 is

task T9;

task body T9 is

I : ITEM := GET2;

begin

null;

end T9;

begin

Q2.Enqueue("");

end T6;

begin

accept E1;

end T1;

task body T2 is

begin

select when False =>

accept E2;

or

terminate;

end select;

Set_True (S);

Wait_For_Release(BO, Notif);

end T2;

task body T3 is

begin

Q1.Enqueue("");

Q1.Enqueue("");

end T3;

task body T4 is

Z : ITEM;

begin

V.R (Z);

Q1.Dequeue(El);

T1.E1;

end T4;

begin

null;

end dl4;

T1

T4

Acc

T5

Acc

T2

Com

T3

Com

V

PEC

Enq

B

Fin

T6

T9

Fin

T7

Sus

T8

Deq

GET2

Fin

dl4

Fin

Fin

Fin

Fin

Fin Fin

W

Fin

Pro

GET1

Fin

EC

BR

Waiting relation

Subprogram or Brock statement

Task

Fig. 4. TWFG of example program 4
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3.6 Example Program 5: Two Tasking Deadlocks Each of Which Will
Occurs Exclusively

This program has two kinds of tasking deadlocks each of which occurs exclusively.
Which of the deadlocks occur depends on execution environment of the program. T1
and T2 may form dequeue waiting and barrier-release waiting cycle. Otherwise T3 and
T4 may form enqueue waiting and barrier-release waiting cycle. If T3 calls Enqueue
earlier than calling Enqueue of T1, then the cycle of synchronization waiting relations
in this program is

T1 →Deq T2 →BR T1.
Otherwise, the other cycle is

T3 →Enq T4 →BR T3.

Example Program 5

pragma Task_Dispatching_Policy

(Fifo_Within_Priorities);

with System;

with Ada.Containers.Synchronized_Queue_Interfaces;

with Ada.Containers.Bounded_Synchronized_Queues;

with Ada.Synchronous_Barriers;

with Ada.Synchronous_Task_Control;

with Ada.Text_IO;

use Ada.Synchronous_Barriers;

use Ada.Text_IO;

procedure dl6 is

type Queue_Element is new String(1..0);

package String_Queues is

new Ada.Containers.Synchronized_Queue_Interfaces

(Element_Type => Queue_Element);

package String_Priority_Queues is

new Ada.Containers.Bounded_Synchronized_Queues

(Queue_Interfaces => String_Queues,

Default_Capacity => 1);

Q1, Q2 : String_Priority_Queues.Queue;

El : Queue_Element;

Number_Of_Barrier_Tasks : constant := 2;

BO1, BO2 :

Ada.Synchronous_Barriers.Synchronous_Barrier

(Number_Of_Barrier_Tasks);

Notif : Boolean := False;

task T1;

task T2;

task T3;

task T4;

task body T1 is

begin

Q1.Dequeue(El);

Wait_For_Release(BO1, Notif);

Q2.Enqueue("");

end T1;

task body T2 is

begin

Q1.Enqueue("");

Wait_For_Release(BO1, Notif);

Q1.Enqueue("");

end T2;

task body T3 is

begin

Q1.Dequeue(El);

Q2.Enqueue("");

Wait_For_Release(BO2, Notif);

end T3;

task body T4 is

begin

Q2.Dequeue(El);

Wait_For_Release(BO2, Notif);

Q2.Dequeue(El);

end T4;

begin

Q2.Enqueue("");

end dl6;

T1

T2

Deq

BR

T4

Acc

dl6

Fin

Fin

Fin

dl6

T3

Fin T4

Fin

Enq

BR

Waiting relation

Subprogram or Brock statement

Task

Fig. 5. TWFG of example program 5
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3.7 Example Program 6: Three Tasking Deadlocks Each of Which May
Occurs Exclusively

This program is just like Program 5. The barrier objects BO1 and BO2 change into
BO as new barrier objects in this program. This is a program to exploit a characteris-
tic in Synchronous barrier. This may have three kinds of tasking deadlocks with new
synchronization waiting, but they each of the tasking deadlocks occur exclusively, or
otherwise any of them do not occur. Each of three pairs of tasks may form a cycle of
synchronization waiting relations in this program. The cycle may be

T1 →Deq T2 →BR T1, T2 →BR T3 →Deq T2, T3 →Enq T4 →BR T3.

Example Program 6

pragma Task_Dispatching_Policy

(Fifo_Within_Priorities);

with System;

with Ada.Containers.Synchronized_Queue_Interfaces;

with Ada.Containers.Bounded_Synchronized_Queues;

with Ada.Synchronous_Barriers;

with Ada.Synchronous_Task_Control;

with Ada.Text_IO;

use Ada.Synchronous_Barriers;

use Ada.Text_IO;

procedure dl7 is

type Queue_Element is new String(1..0);

package String_Queues is

new Ada.Containers.Synchronized_Queue_Interfaces

(Element_Type => Queue_Element);

package String_Priority_Queues is

new Ada.Containers.Bounded_Synchronized_Queues

(Queue_Interfaces => String_Queues,

Default_Capacity => 1);

Q1, Q2 : String_Priority_Queues.Queue;

El : Queue_Element;

Number_Of_Barrier_Tasks : constant := 2;

BO :

Ada.Synchronous_Barriers.Synchronous_Barrier

(Number_Of_Barrier_Tasks);

Notif : Boolean := False;

task T1;

task T2;

task T3;

task T4;

task body T1 is

begin

Q1.Dequeue(El);

Wait_For_Release(BO, Notif);

Q2.Enqueue("");

end T1;

task body T2 is

begin

Q1.Enqueue("");

Wait_For_Release(BO, Notif);

Q1.Enqueue("");

end T2;

task body T3 is

begin

Q1.Dequeue(El);

Q2.Enqueue("");

Wait_For_Release(BO, Notif);

end T3;

task body T4 is

begin

Q2.Dequeue(El);

Wait_For_Release(BO, Notif);

Q2.Dequeue(El);

end T4;

begin

Q2.Enqueue("");

end dl7;

dl7

T1

Fin T2

Fin

Deq

BR

dl7

T2

Fin T3

Fin

BR

Deq

dl7

T3

Fin T4

Fin

Enq

BR

Waiting relation

Subprogram or Brock statement

Task

Fig. 6. TWFG of example program 6
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4 Concluding Remarks

We have presented some new types of new tasking deadlocks concerning new synchro-
nization waiting relations, i.e., enqueue waiting relation, dequeue waiting relation and
barrier-release waiting relation, defined in Ada 2012. We are extending our run-time
detection tool [5, 9] to detect the new tasking deadlocks in Ada 2012 programs.
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