
�����	����
��� �������� ����������

�� ������ ������

������ ������� � ����� �����
������! 	���� ��
����
�������� � �
��
�����

cdaniel.cooper@boeing.com

The Ada Semantic Interface Specification (ASIS) is an interface between an Ada environment
and any tool requiring information from it. An Ada environment comprises valuable semantic and
syntactic information that can be exploited for automated code analysis. ASIS provides an open
and published callable interface that gives access to this information; further, ASIS has been
designed to be independent of underlying Ada environment implementations, thus supporting
portability of code analysis tools while relieving tool developers from needing to understand the
complexities of an Ada environment’s proprietary and evolving internal representation.

��� �	
	
��� �
 ���	 �
������
Why is something like ASIS needed? ASIS provides a basis for implementing portable tools that are aimed at
analyzing static properties in Ada source code. Such code analysis capability has in general been
underleveraged in software development organizations; but for the Ada language in particular, it can greatly
enhance the development process. Code analysis automation can harness the excellent software
engineering features of Ada to facilitate code comprehension, high reliability, and high quality in the software
product. The following text presents some motivational background.

����� ��
�������

Code analysis is the inspection of software source
code for the purpose of extracting information about
the software. Such information can pertain to
individual software elements (e.g., standards com-
pliance, test coverage), the element attributes (e.g.,
quality, correctness, size, metrics), and element
relationships (e.g., complexity, dependencies, data
usage, call trees); thus, it can support documenta-
tion generation, code review, maintainability assess-
ment, reverse engineering, and other software
development activities.

Extracted information falls into two major categories:
descriptive reports which present some view of the
software without judgement (e.g., dependency
trees, call trees), and proscriptive reports which look
for particular deficiencies — or their absence (e.g.,
stack overflow, excessive complexity, unintended
recursion).

����� �����
�	�����

Broadly speaking, the application of automated code
analysis in the software development process prom-
ises, among other things, to:

� promote discipline and consistency during
development, increasing productivity and re-
ducing unintended variation

� provide empirical evidence and metrics for
process monitoring and improvement

� supplement code �	������
	 �	�
������
�
����
��
�� ������ �	� �

���
��� �� ����
�� ��

����� �	���
��

� preserve architectural integrity in the software
as compromises are made during development

� avoid violations of coding standards , such as
the use of inefficient language constructs

� increase the �

���	��� �	� ������� of
delivered software, reducing defects via com-
prehensive assessment

� enhance safety and security by applying
formal methods to verify assertions made in
program code

� expedite program comprehension during
maintenance, for engineers new to the code

� support reengineering and reuse of legacy
code, reducing costs

� result in reduced risk to budget and ��	�����

The software development life–cycle phases where
code analysis can be beneficially applied include all
those in which source code exists: preliminary
design (software architecture and interface defini-
tion), through testing and system integration, to
maintenance and reengineering. Hence, automated
code analysis is a technology that primarily supports
the back end of the software life cycle.

�����
���������

Over the years, a wide–ranging set of commercial
code analysis tools has become increasingly avail-
able [3, 11]; examples of such tools include:

� data flow analysis and usage metrics

� invocation (call) trees and cross–reference

� dependency trees and impact analysis

� timing and sizing estimation

� test–case generation and coverage analysis

� usage counts of language constructs

� quality assessment metrics

� coding style and standards compliance

� safety and security verification

� code browsing and navigation

� documentation generation

� reverse engineering and re–engineering

� language translation and code restructuring

Unfortunately, the current state–of–the–practice in
software development either omits code analysis
support altogether or only incorporates it as an
ancillary, undisciplined, ad hoc resource. For exam-
ple, it is not uncommon to find within a given project
various home–grown tools that support the above
goals but which are not recognized as overtly
participating in the development process. Such tools
can be quite obtuse (very indirect extraction of
information) and are typically incomplete (handling
only a subset of the development language). Fur-
ther, they tend to be project–specific (or even
person–specific), and cannot be reused in another
project: they are later redeveloped from scratch.

These observations corroborate that the need for
code analysis is genuine, and that a common set of
uniform tools could provide significant benefits to
projects. But in the case of Ada software, commer-
cial code analysis tools have historically proven to be
barely adequate, manifesting a variety of problems
whose nature and origin are described below.

��� ������
�
� 	�� ���� ���
����
For Ada, why is ASIS the best approach? Code analysis tools are not new, having been available for decades;
but the advent of the Ada language has exposed a variety of analysis limitations and has consequently
demanded more comprehensive technology. The following text articulates various Ada–specific issues from a
historical perspective: it reviews several technologies that have been applied — with varying degrees of
success — to code analysis specifically targeted to Ada software. The review is not comprehensive, but it
sketches the evolution of issues that have propelled the development of the ASIS concept.

����� 	�
� �������

Historically, many commercial code analysis tools
have been supplied by compiler vendors in conjunc-
tion with their compiler products. But as the commu-
nity of CASE tool vendors has grown, such tools are
often available independent of any compiler. Tool
developers have found that conventional parser
technology is sufficient for most traditional lan-
guages; thus when Ada came along, most vendors
expected it would suffice to simply adapt their
parsers to handle Ada syntax. But for Ada, the result
has held many disappointments:

� textual code editors are often sensitive to Ada
syntax but not to Ada semantics

� graphical design editors yield valid graphics, but
invalid Ada designs

� source–level tools such as debuggers are
forced to understand and traverse the internal
data structures of program libraries rather than
the text of original source files

� reverse engineering and test tools manifest
difficulties when trying to resolve overloaded
subprogram names or renamings

� except for compilers, Ada tools do not require
ACVC certification; hence, such tools typically
fail to handle the complete repertoire of Ada
language features

Consider the case of a toolsmith who wants to
develop a call–tree analyzer. For such a tool to
accurately process Ada source files, the toolsmith
would be forced to build almost the entire front end of
an Ada compiler — a decidedly major undertaking
that far out–scopes the original tool building effort.
But CASE tool vendors are not in the compiler
business; most are reluctant to make this major
investment, or have tried and failed. Yet tools built on
parser technology alone are not able to fully support
the semantic richness of Ada.

�����
����

Many Ada compilers store program units into
libraries. They typically structure the information
according to some proprietary internal form, such as
trees of DIANA (Descriptive Intermediate Attributed
Notation for Ada — note that the following discussion
applies to all internal forms, but that DIANA is singled
out due to its public documentation [4, 5]: DIANA had
been intended for standardization, but failed due to
the unexpectedly wide variation in internal forms).

Such trees thus encode both syntactic and semantic
information about Ada programs. The root of a
DIANA tree corresponds to a compilation unit; the
nodes correspond to smaller Ada structures, such as
declarations and statements. Node attributes may
contain descriptive information and references to
other nodes.

DIANA trees offer great convenience and power to
toolsmiths, and are sufficient to support the imple-
mentation of a large variety of tools (besides code
generators in compilers). For example, with access
to DIANA, the toolsmith who wanted to develop the
call–tree analyzer would have a fairly straightfor-
ward project. Furthermore, the tool would exhibit
better performance, bypassing the needless regen-
eration (and redundant storage) of intermediate
compilation results that are already available in the
Ada libraries.

The power of DIANA is sufficient to support the
implementation of a virtually unlimited variety of
tools. In general, any tool that requires the semantic
information generated by an Ada compiler can
benefit from access to DIANA. But as with any
technology, the use of DIANA also has drawbacks:

� a given implementation of DIANA by a vendor is
subject to change: upgrades can obsolete
tools written against previous versions, hamper-
ing maintenance

� similarly, DIANA implementations vary from
vendor to vendor: porting a tool across platforms
is a risky and costly endeavor

� DIANA is hard to use: the trees are quite
complex, making it difficult to write and debug
tools written against a DIANA specification

� the lack of a simple mapping to Ada makes
DIANA hard to understand: as an abstracted
representation of an Ada program, it does not
map intuitively to Ada constructs

� DIANA is not extensible by clients; but tools
may need to add attributes for storing graphical
or other tool–specific information

�����
������
���	

To overcome the drawbacks of DIANA while retain-
ing all of its advantages, a growing need arose to
make tool development possible at a level higher
than the Ada internal representation level. It was
these issues that drove some Ada compiler vendors
to independently develop proprietary higher–level
interfaces that encapsulated their Ada program
library implementations.

In particular, Rational developed a product named
the LRM–Interface [7] in the late 1980’s (it had been
intended for internal use, but was found to be
commercially viable). It provided nearly the same

power as DIANA, through query–oriented services
that extracted a variety of information from the
internal DIANA trees. The interface was also consid-
erably easier to understand than DIANA, because it
used the already–familiar terminology defined in the
Ada LRM (the original Reference Manual for the Ada
Programming Language [13] or its more recent
version, the Ada 95 Reference Manual [6]). Further-
more, the LRM–Interface was not subject to change
(or at least much less so than was the underlying
DIANA), so tools written against it could easily
migrate to updated implementations.

Regardless of LRM–Interface specifics, this and
similar approaches can generally provide great
flexibility. While a data structure like DIANA is not
user extensible, a functional interface can be
extended via user–supplied secondary services built
upon the functions already provided. In–house
engineers can easily and quickly build ad hoc tools,
without funding the development or specialization of
a third–party commercial tool.

Nonetheless, as might be expected, this approach
also has shortcomings:

� importing source code into the tool environment
for analysis can require edits that necessarily
result in code distortion, such that original
code attributes might not be preserved (e.g., line
numbers or the byte sizing of data)

� interface services are read–only and cannot
make annotations in the Ada library or otherwise
modify its state

� tools are vendor dependent, such that a given
tool cannot access Ada libraries from multiple
vendors, or equivalent tools from multiple
vendors cannot access a given Ada library

� data interchange is not standardized among
tools, so users can’t configure their own
integrated toolsets by choosing from competing
or complementary vendors

� within a software engineering environment
(SEE), Ada semantic information remains
isolated from and not integrated with other
engineering data present in the environment

����� ����

Historically, only a few Ada vendors provided access
to the information contained in their proprietary Ada
program libraries; and each such interface was
unique. Thus began to emerge the need for an open
standard that would allow vendor–independent,
uniform access to that information.

In 1990, the STARS program leveraged some
existing informal efforts, and initiated the develop-
ment of the Ada Semantic Interface Specification
(ASIS); but shortly thereafter, the activity became

unfunded due to the STARS decision to no longer
support standardization efforts. Despite this, several
of the involved vendors (primarily TeleSoft) contin-
ued the ASIS work on a volunteer basis. Some time
later, Rational also became an active participant,
and seeded the draft standard by contributing their
LRM–Interface specification to ASIS.

In 1992, the Ada Board recognized the benefits to
the Ada community that a standardized ASIS could
offer, and recommended that the AJPO director
support “by whatever means possible the develop-
ment of an ASIS standard and its submission to
ISO/WG9 for publication.” Subsequently, the ACM
SIGAda organization launched official sponsorship
of this important work, supported though volunteer
effort in the ASIS Working Group (ASISWG) [1]. The
ASISWG then completed the specification, naming it
ASIS 87 (in the United States, ASIS 83) [2]; in
December 1993, the AJPO director announced the
availability of ASIS and recommended its use. The
ASISWG proceeded to develop ASIS for Ada 95.

As the ASISWG has no standardization authority, an
ASIS Rapporteur Group (ASISRG) was established
in April 1995 by the ISO/IEC JTC1/SC22 WG9, in
order to standardize ASIS as an international
standard for Ada 95. ASISWG and ASISRG have

jointly cooperated to evolve ASIS as an important
interface to the Ada 95 compilation environment.

Like its LRM–Interface predecessor, ASIS defines a
set of queries and services that provide uniform
programmatic access to the semantic and syntactic
information contained within Ada libraries (i.e.,
vendor independence). In addition, for each Ada
vendor, ASIS clients are shielded from the evolving
proprietary details that implement the vendor’s
library representations and internal forms (i.e.,
version independence). ASIS is designed for imple-
mentation on a variety of machines and operating
systems, while also supporting the Ada semantic
requirements of a wide range of client tools.

ASIS services are essentially primitive, intended to
support higher level, more sophisticated services
that address the varied needs of specialized tools.
While ASIS currently operates in a read–only mode,
it may eventually be extended to support some
(probably limited) update capability, enabling client
tools to save application–dependent data (e.g.,
graphical information) within an existing Ada library.
Although an ASIS implementor could readily support
read–write features, members of the safety–critical
community have emphasized the danger of provid-
ing a generalized write capability, since this could
enable editing of the internal representation to differ
from the original source code.

��� ������	

The long–term goal is to achieve a critical mass of ASIS implementations. Several are already available,
particularly ASIS–for–GNAT [8, 9], and more are coming soon. These will promote a new generation of
semantically integrated Ada tools, which in turn will increase programmer productivity and product quality,
while decreasing Ada development costs. In particular, the availability of ASIS implementations promises to:

� stimulate improved quality within existing Ada
CASE tools; currently, these tend to be weak in
supporting full Ada semantics (e.g., in preserv-
ing renamed entities, resolving overloaded
subprogram names, etc.)

� eliminate the need to import Ada source code
into secondary Ada compilation environments,
resulting in no distortion or loss in the subject
code (e.g., preserving original line numbers and
the byte sizing of data)

� enhance safety and security by providing for a
new class of powerful analysis tools that apply
formal methods to verify assertions made in
source code (e.g., using Pragma Annotate)

� improve the overall performance of Ada CASE
tools, by eliminating the regeneration (and
redundant storage) of Ada semantic information
that already exists in Ada libraries

� facilitate in–house development of informal but
powerful ad hoc Ada tools, providing flexibility

as needed without funding Ada CASE vendor
specializations

� maximize interoperability between Ada CASE
tools and Ada compilation environments, thus
maximizing tool availability

� enable the data interchange of Ada semantic
information between complementary or compet-
ing Ada CASE tools, thus maximizing user
choices for the best capabilities of each

� promote standardization in software engineer-
ing environments, enabling data integration of
Ada semantic information with other engineer-
ing data present in the environment

� establish enabling technology for new Ada
CASE tools, by eliminating the need for tool
vendor investment in proprietary Ada compiler
technology; this will have a major impact on
stimulating the development of new code
analysis capabilities

��� ���������	

1: ASISWG/ASISRG; Jun95: WWW home page at
ht tp : / /www.acm.org /s igada/WG/
asiswg

2: ASISWG/SIGAda; May94: Ada Semantic Inter-
face Specification, ASIS 83/87, version 1.1.1

3: D. Ehrenfried; Jul/Aug94: “Static Analysis of Ada
Programs,” SIGAda ACM Ada Letters, volume
XIV #4, pages 28–35

4: G. Goos, W. Wulf, A. Evans, K. Butler; 1983:
DIANA: An Intermediate Language for Ada,
Springer–Verlag LNCS #161

5: Intermetrics, Inc; 1986: Reference Manual for
the Descriptive Intermediate Annotated Nota-
tion for Ada (DIANA)

6: International Standards Organization (ISO),
Information technology — Programming lan-
guages — Ada; Jan95: Ada 95 Reference
Manual, standard ANSI/ISO/IEC–8652:1995

7: Rational Software Corp; May89: Rational
Design and Document Support Tools Guide,
document 8043A, version 1.0

8: S. Rybin, A. Strohmeier, E. Zueff; 1995: “ASIS for
GNAT: Goals, Problems, and Implementation
Strategy,” Ada–Europe Symposium Proceed-
ings, Springer–Verlag LNCS #1031, pages
139–151

9: S. Rybin, A. Strohmeier, A. Kuchumov, V.
Fofanov; 1996: “ASIS for GNAT: From the
Prototype to the Full Implementation,” Proceed-
ings of Ada–Europe Conference on Reliable
Software Technologies, Springer–Verlag LNCS
#1088, pages 298–311

10: Software Productivity Consortium; 1989: Ada
Quality and Style: Guidelines for Professional
Programmers, Van Nostrand Reinhold

11: Software Productivity Consortium; Jun90:
“Tools for Static Analysis of Ada Source Code,”
technical report 90015–N

12: Software Productivity Consortium; Oct95: Ada
95 Quality and Style: Guidelines for Professional
Programmers, document SPC–94093–CMC,
version 01.00.10

13: U.S. Department of Defense, Ada Joint Program
Office; Feb83: Reference Manual for the Ada
Programming Language, standard ANSI/MIL–
STD–1815A–1983, ISO/IEC–8652:1987

