
1

Equitable Software (Draft)

Robert C. Leif, Ada_Med, a Division of Newport Instruments

Two critical factors required for the commercial success of a technology are 1) the
technology must have some inherent utility and 2) there must be a strong economic
benefit connected with its adaptation. The relative commercial failure of Ada obviously is
not the result of a lack of utility. If utility were the only criterion, there would be no need
for this essay. However, economic benefit can easily overshadow utility.

There is no question that Sun has done an excellent job marketing Java with the result
that there is a very substantial library of Java components. (Fortunately, these and
those developed in other languages can be interfaced to Ada.) Unfortunately, the
quality of marketing does not have any direct relation to the quality of the resulting
libraries or large benefit to the users who actually create software. Sun's costly
advertisements in the Wall Street Journal may provide management with the belief that
their software problems have been solved; unfortunately, it does not provide the
technology for the software engineers to produce an efficient reliable, portable product.

The problem to be solved is creating economic motivation for the use of Ada and
concomitant good software engineering practices. The quality of the design of a
programming language and of the available compilers although of significance are often
of less significance than the quality of the programming environments and libraries. If a
library does not exist then it can not win on quality. Therefore, the question is how to
provide a strong economic incentive for the creation and use of Ada libraries.

There are several alternatives:
1) Altruism. The creator of the library sees his or her work included in many programs
and receives much acclaim and honor from his or her peers. There are very few
examples of this occurring with real products and the measure of success based on
their conversion into commercial products. It should be noted that many creative
individuals are responsible for others. They have spouses or significant others and
children or other relatives who are either dependants or who share support
responsibilities. These other individuals can not be expected to look favorably on one
spending large amounts of time on what is essentially a hobby. However, they can be
expected to be supportive of a venture with real potential to increase their standard of
living.
The argument that the compensation for software can be based upon payments for
support ironically has a significant flaw for Ada products. One of the great virtues of Ada
source text is that usually is readable. Both the Ada language and culture enforce this.
Thus often, a user will be able do their own maintenance and make fixes or create
enhancements.

2) Quick Buck: This approach is based on selling a limited number of copies at an
exorbitant price. Defense contractors even have the advantage of being paid prior to

2

delivery and limiting their production to items that are funded by the purchaser. William
Gates has stated that mass marketing is the correct approach. His obvious commercial
success proves that he is correct.

3) The Developer as a Capitalist: Treating software development as capital creation as
opposed to a service does not have the inherent problems of the above two
alternatives. This requires keeping the initial cost of the libraries low in return for future
royalties to be derived from their actual use in commercial products. A developer by
licensing Ada packages would be contributing capital to the organization that creates a
product. This would result in minimizing the development costs of new Ada products. It
also has the very interesting property that the financial interest of the original developer
in the reuse of that software provides a strong motivation to help the user. This is a
major benefit compared to the present situation for unsupported (nonpaying) users of
“Free” Software.
The major problem with this approach is determining the contribution of each software
suppler to the final project. This measurement and the determination of the pricing of
components should be objective and automated in order to avoid legal and accounting
expenses.

Fortunately Ada already provides a unique solution, which is presently unavailable in
other languages. A tool based on the Ada Semantic Interface Specification, ASIS, can
be created to measure the number of Function Points present in the final linked program
that were provided by each package. Function points are a reasonable solution. The
use of the other alternative, counting semicolons from lines which are not totally
comments, is completely inappropriate for Ada. The inclusion of reusable structures
based on object oriented class-wide programming and Ada’s an excellent facility for
generics renders obsolete simple linear measurements, such as the aforementioned
counting of semicolons. Although the Ada package structure is excellent for creating
and organizing libraries for re-use, it can result in the user being forced to acquire a
libraries which contain a very significant amount of extraneous material. Basing
payment on the actual amount of software used, is the equitable solution to the pricing
of the fractional use of large libraries.

The term source text will be used instead of the more common source code. This
discussion is totally irrelevant to software artifacts that require cryptography skills to
interpret. The subject of providing the source text of the packages was not directly
discussed in the above discussion, since, it is not materially relevant. Of greater
significance, the availability of source has significant advantages to both the seller
(producer) and customer (user). Since the benefits to the user are well known, this
discussion will be limited to the benefits to the seller.
1) With Ada, customarily, the user already has the specifications, which often include
the private section. This information provides significant insight into the design and
organization of the packages.
2) Part of the vendor's responsibility for usability is transferred to the customer.

3

3) The customer will often review the packages, which will often result in a request for
an explanation of part of the source, discovery of errors and suggestion of how to fix the
problem, or better yet, supplies a patch to fixe the problem.
4) When the compiler vendors change library formats, the package vendor will not have
to recompile their packages. Most Ada packages in source can be used by any Ada
compiler that includes annexes which were used in the source.
5) The difficulties of managing compiled Ada '83 libraries was one of the main sources
of the negative image of Ada.
6) Source is relatively compact compared with libraries and can be shipped via the
internet.

One argument against providing source was that it facilitated software piracy. One very
simple counter argument is that there are many successful industries that do provide
source. These include: book publishing, video tape, CD-ROM, and music publishing.
One other argument is the well known fact that some piracy may actually benefit the
vendor. Firstly, the pirated version serves as a demo product. Secondly, once the
customer uses a product, some level of interaction with the vendor is often required.
One obvious benefit to the customer of purchasing software is to inform the vendor that
the customer is a user and thus, should be informed of bugs and updates, etc. In fact,
there is a symbiosis between the customer and the vendor. The customer has a vested
interest in the vendor staying in business.

No Future: The prevailing view in the software community and even in the Ada
community is, the war is over and Microsoft has won on both the operating system and
applications. Actually, Microsoft has several significant disadvantages, in spite of the
obvious capabilities of its management. Firstly, it is a very large organization. My past
experience has convinced me that the COCOMO coefficients for projects developed at
large organizations are very large. In spite of the highly touted virtues of creating object
oriented software applications in C++. Microsoft Office does not appear to have been
assembled from common parts. Word does not inherit its tables from Excel, etc. The
use of floating point numbers to represent money, at present, has no justification.
Fortunately, for Microsoft and one of the major reasons for its dominant position is the
sheer technical and commercial incompetence of its competitors.

No one has tested the market with reliable, efficient extensible, software. Dear reader
you can determine the accuracy of this statement by visiting your nearby computer
software store. The only extensively reused item is the operating system. The other
standard applications are all stand-alone. They are not based on Microsoft Office
applications. Certainly, many DLLs (ActivX components) are shared. However,
considering the number of copies sold, the number of add-ins or derivative applications
is surprisingly small.

In short there is money to be made with commercial, quality products written in Ada .
The long term viability of the present commercial software culture which sells
“upgrades” rather than having recalls is infuriating. The inherent confusion of the source
language C or its derivatives shows through. Most of the present products are

4

unreliable, inefficient and awkward to use. The two key definitions are user hostile and
artificial stupidity. During the nineteen fifties, the Japanese automobile and electronics
manufacturers followed the teachings of Total Quality with devastating effects. Ada
provides software entrepreneurs with a similar opportunity.

