
 1

SystemAda: An Ada Based System-Level Hardware Description Language

Negin Mahani, Parnian Mokri, Mahshid Sedghi, and Zainalabedin Navabi

Nanoelectronic Center of Excellence
Electrical and Computer Engineering Department

Faculty of Engineering, Campus #2
University of Tehran,
14399 Tehran, IRAN

{negin, parnian, mahshid, navabi}@cad.ut.ac.ir

Abstract

Recent research on system level design has

produced a new level of abstraction for description of
hardware that is referred to as Transaction Level
Modeling, or TLM. TLM separates hardware into
computation and communication units and describes
each at a very abstract level. . Another important
property of electronic circuits, which is also modeled
well in TLM, is concurrency of tasks and operations.
Inherent concurrency of Ada, makes this language a
good candidate for design and description of modern
electronic systems. This paper*

 describes how to use
Ada as a system description language like SystemC,
and will use Ada compilers (such as Gnat) to evaluate
systems described using Ada. We refer to the
adaptation of Ada for system level description as
SystemAda. This paper reviews Ada programming
language requirements for modeling behavior of a
digital system at transaction level, and considers
possible approaches for extending Ada to meet these
requirements.

1. Introduction

Increasing complexity of today’s electronic systems
has obliged system designers to come up with high
level description languages for system modeling.
Today, Transaction Level Modeling (TLM) is
becoming a common way of simplifying system level
design and architecture exploration, allowing designers
to focus on functionality of the design and to be free
from Register Transfer Level (RTL) details [1]. At this
level of abstraction, a component either refers to a

* This work has partially been funded by a grant from
Iran National Science Foundation (INSF).

communication component, called channel, or a
computation one.

For design at the transaction level, different
Hardware Description Languages (HDLs) have been
developed based on application focus, tool
environment, and correspondence with hardware [2]. A
TLM language must meet two major requirements to
be appropriate for hardware/software co-design as the
first step in TLM design process [3]. These
requirements are: the ability to describe complex
hardware, and software development. SystemC, which
is a library of C++ classes, is currently adopted as a
TLM language by design community.
A study of the characteristics of Ada language shows
that it can also be used as a TLM language. An
important characteristic of the Ada compilers is that they
can catch a big part of the errors that C compilers
would miss.Inherent concerency of the Ada is also one
of its outstanding advantages over C++. Ada has a
high-level concurrency model whereas C/C++
programmers must use external libraries to mimic
concurrency [4, 5]. In addition, Ada extensively
supports multithreading and multiprocessing, while
C/C++ programmers have to rely on additional patches
[4, 5].

Predefined services in Ada 2005 make it possible to
trigger events at a specified time or when a specified
amount of CPU time has been consumed by a thread.
Another advantage of Ada involves invoking threads as
well as the notion of synchronized interfaces similar to
those in Java, which specify synchronization
properties. These features help linking object-oriented
programming to real-time activities [4, 5, 6].

In this paper, we introduce SystemAda as a system
description language for describing hardware systems.
This work examines two aspects of SystemAda: it has
to be able to describe hardware at the transaction level
(TLM), and it must provide a link to RTL and
incorporate RTL descriptions. For TLM, we describe

 2

TLM FIFO as the basic TLM 1.0 channel using Ada
and show how other TLM channels can be described
using this channel. For RTL, we explain a method for
linking Ada to RTL.

Section 2 contains an overview of Ada as an HDL.
In Section 3, major requirements for SystemAda as a
TLM language are explained. This section starts with
introduction of a method for linking Ada to RTL, and
then presents an overview of TLM channels and
implementation of their functionality in Ada. Section 4
describes TLM-FIFO application in a master-slave
architecture in Ada using tasks of this language.
Finally, Section 5 concludes the paper.

2. The history of Ada as an HDL

Most hardware developers use an HDL to design
hardware components, and a programming language,
usually C or C++, for simulation and testing. With
Kernel Ada, design can be integrated with testing, and
an iterative design process can be greatly simplified
[7]. The idea of using Ada as an HDL dates back to
1980’s. At that time, Ada compilers were time-
consuming and design abstraction level was at
transistor level, making Ada useless for hardware
description. Later, by migration of design to higher
abstraction levels, it was proved that Ada83 can be
used as an HDL for design at gate level.

In 1995, a new version of Ada called Ada95 was
defined with object oriented features which were
suitable for high level design such as TLM [8].
Considering Ada as the basis of the VHDL language,
which is one of the most popular HDLs especially for
complex hardware description at RTL, it will be more
favorable to use it as a TLM description language core.

By exploiting the inherent concurrency of Ada and
making use of its functions and constructs, we can
describe hardware components using Ada.

Figure 1 shows how a simple multiplexer is
described in Ada. The operation of the multiplexer is
described as an Ada procedure. The package body (the
lower part of the code) implements the multiplexer
Boolean operation using basic logical operations.

As mentioned before, software development is an
important part of design process in TLM and using
Ada in this design step has the following advantages:

• Reduction of debugging time [10]
• Ada compilers show many design and

semantics errors early in the compilation
process

• Problem (exception) handling mechanism [10]

package multiplexer is
 subtype input is Boolean;
 subtype output is Boolean;
 mux_in : input := true;
 data1 : input := true;
 data2 : input := false;
 mux_out: output;
 mux_in_invert : input := false;

 procedure mux (mux_in : in input;
 data1 : in input;
 data2 : in input;
 mux_out : out output);
end multiplexer;

package body multiplexer is
 procedure mux (mux_in : in input;
 data1 : in input;
 data2 : in input;
 mux_out : out output) is
 begin
 mux_out := mux_in and data1;
 invert(mux_in , mux_in_invert);
 ...
 ...
 end;
end multiplexer;

Figure 1. A multiplexer spec and body package

3. Major requirements for SystemAda

Having the link to RTL and the ability to describe
TLM channels are the major requirements of a TLM
language. In order to provide a link between Ada and
RTL, an HDL package containing primary RTL
components is developed in Section 3.1. Since
communication is the main focus of TLM, and all of
TLM channels have been defined based on TLM FIFO
channel, a TLM-FIFO channel has been described and
instantiated in Section 3.2.

3.1. Linking to RTL

Providing an HDL package containing primitive
logic components described in Ada is an appropriate
way of linking Ada to RTL. Based on SIGADA kernel
Ada project, we have implemented an HDL package
which contains a subtype Boolean input and output,
one and two dimension buses of Boolean arrays and
primary logical operations which will use arrays as a
data storing structure. This way, other components can
be developed more easily and in a flexible fashion.
Figure 2 demonstrates the specification of this
package.

 3

package HDL is
 subtype input is Boolean;
 subtype output is Boolean;

 type bus is
 array (natural range <>) of Boolean;
 type dimesion2_bus is
 array (natural range <>,
 natural range <>) of Boolean;

 procedure invert (xin : in input;
 xout : out output);
 procedure and_bit (x1 : in input;
 x2 : in input;
 xout: out output);
 ...
end HDL;

Figure 2. Outline of our HDL package

3.2. Describing TLM channels using Ada

In this section, we show the implementation of
TLM channels using Ada.

3.2.1. TLM-FIFO channel

FIFO is the channel based on which other TLM-1.0
channels are defined. The FIFO channel is generic in
size and type. By using this feature, we define a
generic FIFO channel in Ada to be used later for
defining other TLM channels. The GENERIC keyword
in Ada has the functionality of TEMPLATE in C [9].

Since in TLM data transmitted between components
does not have any limitation in size and can be of any
type, we use generic types in Ada for FIFO nodes to
simulate these capabilities. Figure 3 shows the code of
TLM FIFO channel described in Ada.

Generic TYPE fifo_element IS PRIVATE;
PACKAGE fifo IS
 input : fifo_element;
 output : fifo_element;
 empty_flag : boolean;
 TYPE fifo_node;
 TYPE fifo_channel IS ACCESS fifo_node;
 TYPE fifo_node IS RECORD
 data : fifo_element;
 link : fifo_channel;
 END RECORD;
 Head : fifo_channel;
 PROCEDURE add_fifo;
 PROCEDURE rem_fifo;
 ...
END fifo;

Figure 3. Generic FIFO

The program in Figure 4 shows how an integer
FIFO can be instantiated.

with Ada.Text_IO;
use Ada.Text_IO;
with fifo;
package int_fifo is new fifo(integer);

Figure 4. Generating an integer FIFO

3.2.2. Other TLM Channels in Ada

To implement other TLM channels, hierarchical
packages should be used. This allows defining new
channels that are based on the FIFO channel.

Figure 5 shows hierarchical package format in Ada
95. Here, the package named outer contains two inner
child packages and their bodies.

package outer is
 package inner_1 is
 ...
 end inner_1;
end outer;

package outer.inner_2 is
...
end outer.inner_2;

Figure 5. Hierarchical package format in Ada 95

By defining a generic FIFO and using hierarchical
packages, other channels based on FIFO can be
described. Figure 6 shows the way we have developed
this concept.

with Ada.Text_IO;
use Ada.Text_IO;

Generic package fifo.channel2 is
 --channel2 extra functions
end fifo.channel2;

Figure 6. Describing a channel based on FIFO

channel2 shown in this figure has its own body and
implementation and is also generic. The FIFO channel
can be used to implement other kinds of channels.

4. Master-slave architecture in TLM

We have modeled a master-slave architecture using
Ada. A master module puts data into a TLM FIFO
channel and the slave gets the data from the FIFO and
processes it. We have used the concept of tasks in Ada
which are introduced in the following subsection.

 4

4.1. Task overview

Tasks are the basic elements for implementing

concurrency in Ada. Each Task can communicate with
other tasks and will proceed until a specified delay, and
works as though it is running on a separate computer.
This is achieved by the entry concept which defines
what information should be sent when a task is
required, and what should be done. Tasks can be
sensitive to activation of one or more entries [2, 8, 11].
Some of the features of tasks are as follows [8]:

• Waiting for other tasks to complete.
• Sending messages between each other (by using

entries) called rendezvous
• Setting global variables to communicate.

Like packages, tasks have a declaration and a body.

A task body defines what the task will do when it starts
up. SELECT and ACCEPT statements together mark
alternative entry points for messages into a task [13].
The SELECT block can contain many ACCEPT
statements, separated by the reserve word "OR".
Messages sent to the receiving task are processed in the
select block in the order they are received [13].

4.2. Master-slave TLM model

The block diagram of TLM master-slave architecture
is shown in Figure 7. There are two modules in the
system: a Master module which adds numbers to an
integer FIFO and a Slave module which removes
numbers from the integer FIFO and processes them.

Figure 7. TLM master-slave architecture

The procedure of Figure 8 shows the TLM master-

slave modeled in Ada using Ada tasks. Three tasks
have been defined in the system: the first one, which is
named fifo_task, performs the main operation of the
FIFO through the entries add and remove, the names of
which imply their functionalities. The other two tasks
implement the functionality of master and slave
modules. Since these modules start in non-conditional
loops, this process will never end.

procedure TLM_Master_Slave is
 task type fifo_task is
 entry add;
 entry remove;
 end fifo_task;
 task body fifo_task is
 begin
 loop
 select
 accept add;
 add_fifo;
 accept remove;
 rem_fifo;
 end select;
 end loop;
 end fifo_task;
 fifo1:fifo_task;

 //task type slave definition
 //task type master definition

 slave1:slave;
 master1:master;
begin
 loop
 master1.start;
 end loop;
end TLM_Master_Slave;

Figure 8. Master-slave TLM modeled using task feature

Figure 9 shows the Master task. It has an entry
named start. By accepting start in an infinite loop, it
inserts a data into the FIFO and activates entry start for
the Slave task.

 task type master is
 entry start;
 end master;
 task body master is
 begin
 loop
 accept start;
 ...
 fifo1.add;
 slave1.start;
 end loop;
 end master;

Figure 9. Master task

Salve is described in Figure 10. It also has an entry
named start. By accepting start in a never-ending loop,
it removes a data from the FIFO.

Although we have treated a simple example in Ada,
but this clearly shows the power of this language for
descriptions where communications happen through
complex components, which is what characterizes the
new system level design strategy.

 5

 task type slave is
 entry start;
 end slave;
 task body slave is
 begin
 loop
 accept start;
 fifo1.remove;
 ...
 end loop;
 end slave;

Figure 10. Slave Task

5. Conclusions

With designs getting more complex, the need for
system description languages is more revealed. The
first step in this level of abstraction is
Hardware/Software partitioning. Ada with natural
concurrency, early error detection, exclusive error
description and extensive support for multithreading
and multiprocessing would be a good choice for
achieving this goal.

This paper introduces Ada as a TLM language by
providing a link to RTL and also defining TLM-FIFO
channel functionality in Ada. We also described how to
develop other channels based on a single generic FIFO.

As a future work, we are going to complete the
description of other necessary TLM features in Ada.
We will also improve our HDL package in Ada to
describe more basic RTL constructs, and finally we
will use these features to implement some complex
hardware components at the system level. This
research parallels the work we are doing on defining
languages and tools for designs at the system-level
beyond RTL.

6. References

[1] T. J. Wheeler, “Embedded System Design with Ada as

the System Design Language,” 1984, Available:
http://stinet.dtic.mil/oai/oai?verb=getRecord&metadata
Prefix=html&identifier=ADA144232.

[2] L. Cai, and D. Gajski, “Transaction Level Modeling:
An Overview,” Proc. 1st IEEE/ACM/IFIP International
Conference on Hardware/software codesign and system
synthesis, 2003, pp. 19-24.

[3] Z. Navabi, VHDL: Modular Design and Synthesis of
Cores and Systems, McGraw-Hill, 2007.

[4] R. Goering, “Ada 2005 speaks to real-time embedded
application,” 2007, EE Times, Available:

 http://www.embedded.com/news/embeddedindustry/19
8701828?_requestid=308128.

[5] J. Jackson, “The return of Ada,” 2008, Government
Computer News, Available:

 http://www.gcn.com/print/27_8/46116-1.html#;GCN
Home.

[6] B. Brosgol, and R. Dewar, “Use Ada for Better Safety,
Security, And Reliability,” 2008, Electronic Design
publishes, Available:
http://electronicdesign.com/Articles/Index.cfm?AD=1
&AD=1&ArticleID=18141.

[7] SIGAda Documents, 2007, Available:
 http://www.SIGAda.org/.
[8] Ada Reference Manual ISO/IEC 8652:1995(E), chapter

9, Available:
www.adahome.com/rm95.

[9] J. G. P. Barnes, Programming in Ada, 3rd Edition, ???
[10] D. A. Wheeler, “Lovelace tutorial,” Lesson 1-Brief

Introduction to Ada, Available:
www.dwheeler.com/lovelace.

[11] A. Burns, A. Wellings, and J. Barns, “Concurrency in
Ada”, 2ed edition, Cambridge University Press, 1998.

[12] S. Johnston, “Ada-95: A guide for C and C++
programmers,” Available:

 http://www.adahome.com/Ammo/Cplpl2Ada.html.
[13] “Introductory Ada Concurrency Summary,” 2007,

Available:
http://www.seas.gwu.edu/~csci51/fall99/ada_task.html

http://stinet.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA144232�
http://stinet.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA144232�
http://www.amazon.com/Embedded-Design-FPGAs-Zainalabedin-Navabi/dp/0071474811/ref=sr_1_2?ie=UTF8&s=books&qid=1217139051&sr=8-2�
http://www.amazon.com/Embedded-Design-FPGAs-Zainalabedin-Navabi/dp/0071474811/ref=sr_1_2?ie=UTF8&s=books&qid=1217139051&sr=8-2�
http://www.embedded.com/news/embeddedindustry/198701828?_requestid=308128�
http://www.embedded.com/news/embeddedindustry/198701828?_requestid=308128�
http://www.gcn.com/cgi-bin/udt/im.author.contact.view?client.id=gcn&story.id=46116�
http://www.gcn.com/print/27_8/46116-1.html#;GCN�
http://electronicdesign.com/Authors/AuthorID/2902/2902.html�
http://electronicdesign.com/Authors/AuthorID/2644/2644.html�
http://electronicdesign.com/Articles/Index.cfm?AD=1&AD=1&ArticleID=18141�
http://electronicdesign.com/Articles/Index.cfm?AD=1&AD=1&ArticleID=18141�
http://www.sigada.org/�
http://www.adahome.com/rm95�
http://www.dwheeler.com/lovelace�
http://www.adahome.com/Ammo/Cplpl2Ada.html�

	2. The history of Ada as an HDL
	package multiplexer is
	subtype input is Boolean;
	subtype output is Boolean;
	mux_in : input := true;
	data1 : input := true;
	data2 : input := false;
	mux_out: output;
	mux_in_invert : input := false;
	procedure mux (mux_in : in input;
	data1 : in input;
	data2 : in input;
	mux_out : out output);
	end multiplexer;
	package body multiplexer is
	procedure mux (mux_in : in input;
	data1 : in input;
	data2 : in input;
	mux_out : out output) is
	begin
	mux_out := mux_in and data1;
	invert(mux_in , mux_in_invert);
	...
	...
	end;
	end multiplexer;
	3. Major requirements for SystemAda
	3.1. Linking to RTL
	package HDL is
	subtype input is Boolean;
	subtype output is Boolean;
	type bus is
	array (natural range <>) of Boolean;
	type dimesion2_bus is
	array (natural range <>,
	natural range <>) of Boolean;
	procedure invert (xin : in input;
	xout : out output);
	procedure and_bit (x1 : in input;
	x2 : in input;
	xout: out output);
	...
	end HDL;
	3.2. Describing TLM channels using Ada

	Generic TYPE fifo_element IS PRIVATE;
	PACKAGE fifo IS
	input : fifo_element;
	output : fifo_element;
	empty_flag : boolean;
	TYPE fifo_node;
	TYPE fifo_channel IS ACCESS fifo_node;
	TYPE fifo_node IS RECORD
	data : fifo_element;
	link : fifo_channel;
	END RECORD;
	Head : fifo_channel;
	PROCEDURE add_fifo;
	PROCEDURE rem_fifo;
	...
	END fifo;
	The program in Figure 4 shows how an integer FIFO can be instantiated.
	with Ada.Text_IO;
	use Ada.Text_IO;
	with fifo;
	package int_fifo is new fifo(integer);
	package outer is
	package inner_1 is
	...
	end inner_1;
	end outer;
	package outer.inner_2 is
	...
	end outer.inner_2;
	with Ada.Text_IO;
	use Ada.Text_IO;
	Generic package fifo.channel2 is
	--channel2 extra functions
	end fifo.channel2;
	4. Master-slave architecture in TLM
	We have modeled a master-slave architecture using Ada. A master module puts data into a TLM FIFO channel and the slave gets the data from the FIFO and processes it. We have used the concept of tasks in Ada which are introduced in the following subsect...
	4.1. Task overview
	Tasks are the basic elements for implementing concurrency in Ada. Each Task can communicate with other tasks and will proceed until a specified delay, and works as though it is running on a separate computer. This is achieved by the entry concept whic...
	procedure TLM_Master_Slave is
	task type fifo_task is
	entry add;
	entry remove;
	end fifo_task;
	task body fifo_task is
	begin
	loop
	select
	accept add;
	add_fifo;
	accept remove;
	rem_fifo;
	end select;
	end loop;
	end fifo_task;
	fifo1:fifo_task;
	//task type slave definition
	//task type master definition
	slave1:slave;
	master1:master;
	begin
	loop
	master1.start;
	end loop;
	end TLM_Master_Slave;
	task type master is
	entry start;
	end master;
	task body master is
	begin
	loop
	accept start;
	...
	fifo1.add;
	slave1.start;
	end loop;
	end master;
	task type slave is
	entry start;
	end slave;
	task body slave is
	begin
	loop
	accept start;
	fifo1.remove;
	...
	end loop;
	end slave;
	5. Conclusions

