Practical Implementations of Embedded Software
Using the Ravenscar Profile

Stephen Michell
National research Council
1250 Grand Lake Rd. Box 5300
Sydney, Nova Scotia, Canada B1P 6.2
email stephen.michell@nrc.ca

February 20, 2002

Abstract

There is significant industry interest in the use of the Ravenscar Task-
ing profile for high performance and high integrity systems. This paper
takes one such design paradigm, the single writer and multiple readers
problem, shows why it is difficult to implement using Ravenscar, and pro-
vides an effective Ravenscar implementation.

1 Introduction

There is significant industry interest in the use of the Ravenscar Tasking
profile[Burns 1999][IRTAW 1997][IRTAW 1999] for high performance and
high integrity systems. The reduction in scheduling overheads and reduc-
tion in object code needing analysis (kernel footprint) provides significant
savings for this community. The cost of this reduction, however, is that
the complexity of code rises and the usage paradigms of features changes.
Before these communities can optimally use Ravenscar there must be de-
sign patterns developed that show how the capabilities can be effectively
used.

This paper takes one such design paradigm, the single writer and mul-
tiple readers problem, shows why it is difficult to implement using Raven-
scar, and provides an effective Ravenscar implementation. The problem
is examined in 3 forms, using a standard form with Ada (non-Ravenscar)
protected objects, using a simple protected object and time-based se-
quencing, and finally using a multi-protected object implementation.

2 Problem Statement

The Reader-Writers problem is a classic situation that arises in real-time
systems. Typically, a task produces data on a periodic basis which must be

consumed by other tasks. In highly periodic systems this often occurs at
the same periodicity. The readers are not permitted to read the same data
twice and cannot miss a read. The writer is assumed to be free-running;
readers must follow the writer, i.e. they synchronize their reads with each
write, either using a common time base or an intertask communication
paradigm such as a protected object.

package Types_Pkg is
type Data_Type is record
First : Integer;
Second : Integer;
end record;
Consumer_Period : constant Ada.Real_Time.Time_Span
:= Ada.Real_Time.Milliseconds(40);
Producer_Period : constant Ada.Real_Time.Time_Span
:= Ada.Real_Time.Milliseconds(40);
Number_Consumers: constant := 4;
end Types_Pkg;
with Types_Pkg;
package Buffer_Pkg is
protected type Buffer_Type is

procedure Read(D : out Types_Pkg.Data_Type);
procedure Write(D : in Types_Pkg.Data_Type) ;
private

Buf : Types_Pkg.Data_Type;
end Buffer_Type;
end Buffer_ Pkg;
package body Buffer_Pkg is
protected body Buffer_Type is

procedure Read(D : out Types_Pkg.Data_Type) is
begin

D.First = Buf.First;

D.Second := Buf.Second;
end Read;
procedure Write(D : in Types_Pkg.Data_Type) is
begin

Buf.First = D.First;

Buf.Second := D.Second;
end Write;

end Buffer_Type;

end Buffer_Pkg;

with Buffer_Pkg;

package Producer_Pkg is
task type Producer_Type(Buffer : access Buffer_Pkg.Buffer_Type) is
end Producer_Type;

end Producer_Pkg;

with Buffer_Pkg;

package Consumer_Pkg is
task type Consumer_Type(Buffer : access Buffer Pkg.Buffer_Type) is
end Consumer_Type;

end Consumer_Pkg;

Figure 1 - Implementation of Readers-Writer

Figure 1 provides the basic implementation of the situation using a pro-
ducer task, consumer task, and buffer package. A common types package
is included. Routines omitted include the work of the producer and the
consumer, and the package which creates the protected object. It is irrel-
evant to the producer and consumers where the actual protected object
is created since it’s location is passed in as a discriminant when each task
is created.

There is no scheduling in the protected object in Figure 1. Scheduling
must be done individually, such as a common delay. Figure 2 provides
an implementation of the producer and consumer task types which use
Ada’s real time facilities and delay for the same period. Unfortunately,
this approach provides no guarantees and is subject to jitter because the
coupling between the components is too loose and any variations can cause
reads or writes to miss a turn.

with Types_Pkg;
with Ada.Real_Time;
package body Producer_Pkg is

task body Producer_Type is
Next_Period_Time : Ada.Real_Time.Time := Ada.Real_Time.Clock;
New_Data : Types_Pkg.Data_Type;
begin
loop
Next_Time_Period := Ada.Real_Time."+"(Next_Period_Time,
Types_Pkg.Producer_Period) ;
delay until Next_Period_Time;
Produce_Data(New_Data);
Buffer.Write(New_Data);
end loop
end Producer_Type;

end Producer_Pkg;

with Types_Pkg;

with Ada.Real_Time;

package body Consumer_Pkg is
task body consumer_Type is

Next_Period_Time : Ada.Real_Time.Time := Ada.Real_Time.Time_First;
New_Data : Types_Pkg.Data_Type;
begin
loop
Next_Time_Period := Ada.Real_Time."+"(Next_Period_Time,

Types_Pkg.Producer_Period) ;
delay until Next_Period_Time;
Buffer.Read(New_Data);
Consume_Data(New_Data);
end loop
end Producer_Type;
end Producer_Pkg;

Figure 2 Typical Producer and Consumer Task Implementations

3 An Ada95 Approach

Consider the standard Ada [IS 8652:1995] approach. By changing the
definition of the Buffer protected object to include a Read entry queue we
can force all readers to queue upon the object until the writer has written
new data. Figure 3 shows the specification and body for this new buffer.
No changes to the producer or consumer code are required except that we
could possibly reduce or the delay time for consumers.

In this implementation, all consumers wait in a common queue. After
updating the data, the producer sets the boolean guard to True to release
the consumers and exits the protected object. All queued consumer tasks
take a copy of the data in turn and also exit the protected object, reducing
the variable Read Count until it is 0. The last reader returns Read_Count
to the number of readers and sets the Data_Available boolean to False,
preventing any more reads until a new set of data is written.

There is a problem with this implementation in that one or more read-
ers may not be available immediately for the read and another task could
end up reading twice in its place. One solution to this issue is to give each
task a dedicated entry (say using entry families) with its own boolean.

package Buffer_Pkg is
protected type Buffer_Type is

entry Read(D : out Types_Pkg.Data_Type);

procedure Write(D : in Types_Pkg.Data_Type) ;
private

Buf : Types_Pkg.Data_Type;

Data_Available : Boolean := False;

Read_Count : Integer
end Buffer_Type;
end Buffer_ Pkg;

Types_Pkg.Number_Consumers;

package body Buffer_Pkg is
protected body Buffer_Type is

entry Read(D : out Types_Pkg.Data_Type) when Data_Available is
begin
D.First = Buf.First;

D.Second := Buf.Second;

Read_Count := Read_Count-1;

if Read_Count <= 0 then
Data_Available := False;

Read _Count := Types_Pkg.Number_Consumers;
end if;
end Read;
procedure Write(D : in Types_Pkg.Data_Type) is
begin

if Data_Available then
raise Types_Pkg.Protocol Error;

end if;

Buf.First := D.First;

Buf.Second := D.Second;

Data_Available := True; -- releases readers
end Write;

end Buffer_Type;
end Buffer_Pkg;

Figure 3. Standard Ada95 Producer-Consumer Buffer

An alternative solution used here is to have each consumer delay for a
while (say 1/2 the delay of the producer) and then attempt the read. By
this time all other readers should have completed and the entry barrier
will be properly set to False.

4 Ravenscar Implementation

The solution proposed above for Ada95 does not work in Ravenscar. Ei-
ther of the variations, either one queue with multiple callers or multiple
entries, is in violation of the Ravenscar Tasking Profile. If one attempts
to implement it, the kernel would raise Program_Error when a second
consumer attempts to call Read.

Are there other alternatives? Since there is only one producer, can
we have the producer block on the entry? Unfortunately this reverses the
protocol and does not guarantee that all consumers will consume the data
before the producer must produce again. This method also runs the risk
that the producer will block at the buffer and miss a production cycle, in
violation that the producer is strictly periodic.

We could use suspension objects and semaphores, but semaphores are
notoriously error prone and do not support the ceiling priority protocol
[LV000].

A solution to this situation in Ravenscar is to create a single protected
object for each consumer with an entry to call and be suspended. As
before, the producer will update the data and release each consumer.
Figure 4 shows the design of a Buffer_Pkg that has the necessary 2 types
of protected objects. It contains a Buffer protected object as before,
reverted back to the protected procedure interface of Example 1, plus a
new protected type Reader_Type which acts as a suspension object for
each consumer.

It is possible to couple both protected objects (Buffer_Type and Reader_Type),
and a safe buffer management can be created, except that there is a dan-
ger of deadlock on multiprocessor systems (Ravenscar is not intended
for multiprocessor systems, but such code could easily be ported to a
multiprocessor system and fail). Instead we use a third protected ob-
ject for the producer which knows access to both the buffer_type and the
Reader_Type.

package Buffer_Pkg is

protected type Buffer_Type(Readers: access Reader_Array) is

procedure Read(D : out Types_Pkg.Data_Type);

procedure Write(D : in Types_Pkg.Data_Type) ;
private

Buf : Types_Pkg.Data Type;

Data_Available : Boolean := False;

Read_Count : Integer := Types_Pkg.Number_Readers;

end Buffer_Type;

type Reader_Access_Type is access all Reader_Type;
type Reader_Range is range 1 .. Types_Pkg.Number_Consumers;
type Reader_Array is array(Reader_Range) of Reader_Access_Type;

protected type Reader_Type(
Buffer : access Buffer_ Pkg.Buffer_Type) is

entry Read(D : out Types_Pkg.Data_Type);
procedure Release;
private

Ready : Boolean := False;
-- NOTE - The priority of all Protected objects in this package
-- must be the same!!!

end Reader_Type;

protected type Writer_Type(Buffer : access Buffer_Type;
Readers: access Reader_Array) is
procedure Write(D : in PC.Types_Pkg.Data_Type) ;
private
end Writer_Type;

end Buffer_ Pkg;

package body Buffer_Pkg is
protected body Buffer_Type is

procedure Read(D : out Types_Pkg.Data_Type) is
begin

D.First = Buf.First;

D.Second := Buf.Second;
end Read;
procedure Write(D : in Types_Pkg.Data_Type) is
begin

Buf.First := D.First;

Buf.Second := D.Second;
end Write;
end Buffer_Type;

protected body Reader_Type is
procedure Release is
begin
Ready := True;
end Release;

entry Read(D : out Types_Pkg.Data_Type) when Ready is
begin

Buffer.Read(D);

Ready := False;
end Read;

protected body Writer_Type is
procedure Write(D : in PC.Types_Pkg.Data_Type) is
begin
Buffer.Write(D);
for i in Reader_Range loop
Readers(I).Release;
end loop;
end Write;
end Writer_Type;
end Buffer_Pkg;

Figure 4 Buffer and Suspension Protected Objects in Ravenscar

A requirement to avoid priority inversions means that a task in one
protected object should be able to use the services of the other protected
object without departing the first one(since a 2-step algorithm causes the
caller to leave one protected object, drop it’s priority to normal, then
call the second protected object, letting other tasks possibly interleave).
From a practical point of view, this means that the Writer_Type pro-
tected object needs to call both the Buffer.Write and then release each
Reader_Type via the release procedure. The Reader_Type protected ob-
jects only need to know their Buffer so that they can call Buffer.Read. This
is solved by defining all 3 protected types (Buffer_Type, Reader_Type and
Writer_Type) in the same package and exchanging access values through
discriminants for the configuration.

Now, there is no change to the producer task body or the consumer
task body. We do need to alter the specification to pass in the new
protected objects Writer_Type and Reader_Type.

This leaves a small amount of careful crafting of the actual objects,
since we have 3 protected objects interlinked. We can do that using "ac-
cess all buffer_type” and ”access all reader_type”. A package which ac-
complishes this is shown below.

package body Main Pkg is
-- the specification for this package is null
-- except for a pragma Elaborate_body;
Buff : aliased Buffer_Pkg.Buffer_Type;

-- next the 4 reader suspension objects, define and link to Buff

Reader_QOne : aliased Buffer_Pkg.Reader_Type(Buffer => Buff’Access);
Reader_Two : aliased Buffer_Pkg.Reader_Type(Buffer => Buff’Access);
Reader_Three : aliased Buffer_Pkg.Reader_Type(Buffer => Buff’Access);
Reader_Four : aliased Buffer_Pkg.Reader_Type(Buffer => Buff’Access);

-- now combine all suspension objects in 1 array to pass to the buffer
Consumer_Wait : aliased Buffer_ Pkg.Reader_Array
:= (1 => Reader_One’Access,
2 => Reader_Two’Access,
3 => Reader_Three’Access,
4 => Reader_Four’Access);

-- Now we create the tasks that will use these structures.
-- the consumers, writer and producer task must be created in this order

Consumerl : Consumer_Pkg.Consumer_Type(Buffer => Reader_One’Access);
Consumer2 : Consumer_Pkg.Consumer_Type(Buffer => Reader_Two’Access);
Consumer3 : Consumer_Pkg.Consumer_Type(Buffer => Reader_Three’Access);
Consumer4 : Consumer_Pkg.Consumer_Type(Buffer => Reader_Four’Access);
Writer : aliased Buffer_Pkg.Writer_Type(Buffer => Buff’Access,

Readers=> Consumer_Wait’Access);
Producer : Producer_Pkg.Producer_Type(Buffer => Writer’Access);

end Main Pkg;

Figure 5: An example package creating a buffer Protected Object

5 Analysis

The purpose of this discussion is to investigate the dynamic behaviour of
such a system, but a reasonable question is if such a self-referential system
can be built. The package in Figure five shows that indeed it can, albeit
with a bit of work with aliased objects and access to objects.

Of interest to this analysis is the dynamic behaviour of this system.
Now each reader delays and then calls it’s dedicated suspension protected
object, or can call the suspension protected object alone. It is not released
from that suspension object until the producer writes new data. Once new
data is written the producer leaves Buff, but still in its dedicated protected
object releases each reader then leaves. Each consumer is released from
its suspension object, calls Buffer.Read and consumes its data.

There is no risk of priority inversion in this example. All consumers
are blocked on their own dedicated waiting object until explicitly released.
Once released, however, they have the high priority of their protected
object and do not release it to call the Buff protected object. Other
solutions which permit the producer or consumer tasks to exit the Buffer
protected object between calls permit priority inversion.

This solution is also free from deadlock and livelock. There can be
no deadlock because there are no cycles in the calls to protected objects.
There is no liveock because each consumer is blocked on its protected
object until explicitly released, a release which occurs immediately after
the producer writes new data.

The solution is not protected against overconsumption of cpu. If the
total system load forces consumers to be late in arriving at their read
buffer, they can proceed with a read, but the possibility exists that one
could be so late as to miss a read completely and be released just before the
producer writes new data. In such a situation load shedding is assumed
and changes to the protocol required but we cannot assume a solution to
such a problem here.

It will be noted that the Ravenscar-compliant examples given are con-
siderably more complex in source code than the original version. Full Ada
is a rich language with high levels of abstraction to support many con-
cepts, such as selection and queuing in protected objects. This permits us
to write our algorithms fairly compactly, but the cost is residual code for
unused features and no control over others (such as selection order from
multiple queues). This makes qualification of such code nearly impossible
in high integrity systems.

When a simplified system such as Ravenscar is used, we must build
our own library of routines in source code to implement the necessary
paradigms. This adds some complexity to the source code because we
must explicitly code algorithms which were once assumed. The point is,
however, that we work to place such algorithms in modules, and we only
include the ones necessary for the application. This additional complexity
in the source code is acceptable for code qualification because one can
reason at the source code level about exact behaviours; something that
could not be done with the full runtime present.

It is also the belief of the author that real time designers can be-
come comfortable with using such design patterns, and will create them

as needed once they become used to the new paradigms.

6 Conclusion

This example has shown how one common real-time paradigm can be
effectively implemented in Ravenscar using Protected objects. This design
eliminates risk of priority and permits tight scheduling of the component
tasks.

The cost is that scheduling decisions must be carefully crafted through
collections of protected objects, but judicious arrangement will hide the
implementation of such constructs from application code and result in
clean, efficient multitasking designs.

In order for the Ravenscar Tasking Profile to be effectively used and
accepted by the community for which it was intended, other common
paradigms used by these communities should be analysed and design pat-
terns developed that use the profile to advantage. It would be useful for
IRTAW 11 to spend some time in this endeavour.

7 Bibliography

[Burns 1999] Burns J. “The Ravenscar Tasking Profile”., Ada Letters.,
December 1999.

[AONIX Current] Object-Ada and Raven descriptions, current docu-
mentation, Aonix Corp.

[IRTAW 1997] “Proceedings of the 8th International Real Time Ada
Workshop”, Ada Letters, 1997.

[IRTAW 1999] “Proceedings of the 9th International Real Time Ada
Workshop”, Ada Letters, 1999.

[IRTAW 2000] “Proceedings of the 10th International Real Time Ada
Workshop”, Ada Letters, June 2000.

[IS 8652:1995] “The Ada Programming Language Reference Manual”,
ISO/IEC 8652:1995

[LV 2000] “Iproving Predicatbility in Embedded Real Time Systems”,
Lewis B, Vestal S. SEI Technical Report CMU/SEI-2000-SR-011

[Michell 2000] Michell, S. “Position Paper: Completing the Ravenscar
Profile”, Proceedings of the 10th International Real Time Ada Workshop,
Ada Letters, June 2000.

