
MOPping up Exceptions
S. E. Mitchell, A. Burns and A. J. Wellings,

Department of Computer Science, University of York, UK

Abstract: This paper describes the development of a model for the reflective
treatment of both application and environmentally sourced exceptions. We
show how a variety of exception models can be implemented using an
exception handler at the metalevel. The approach described allows for better
separation of exceptional and normal error-free program code producing
systems that are easier to understand and therefore maintain.

Keywords: metalevel architecture, reflection, exceptions.

1 Introduction
The principle reason for the inclusion of
exception handling mechanisms in
programming languages is a desire to
separate error handling from the programs
normal operation [Burns and Wellings,
1996]. This is in line with the justification
for the use of reflection in system design –
in that its use aids in the separation of
concerns.

Despite this desire for a separation, in many
approaches the handler code is still
intermingled with application code, albeit
moved to the end of a program block. In this
paper we explore the use of reflective
principles to complete the separation of
concerns by attempting to operate on
exceptions at the metalevel.

The remainder of this introduction describes
the exception model that we have used as
the basis for our work and explores the
motivation for producing a reflective
treatment of exceptions. The second section
describes two variations of the model, the
first in Section 2.1 considers a model where
the raising of the exception is reified
whereas Section 2.2 considers a scenario
where the exception itself is the reified
entity. Next Section 3 explores further issues

with particular emphasis on the relationship
between concurrency and reflective
exceptions. Finally, we evaluate the
effectiveness of the work with respect to the
success of reflection in producing the
required separation of concerns.

1.1 Non-reflective Exception Models

The exception model that we explore within
this paper is derived from the common non-
reflective one of exceptions being raised
(thrown) and subsequently (possibly) caught
within a separate section of code (termed the
exception handler) usually at the end of an
exception block. Exceptions that are not
caught by any exception handler currently
within scope are propagated back up to the
previous level – the caller – and the search
for a handler repeated. This model follows
that used in many current object-oriented
and procedural languages such as Ada95
[Intermetrics, 1995] and C++ [Stroustrup,
1997]. Both Ada95 and C++ use the
termination model of exception handling –
once an exception has been handled the
exception block is terminated and control
returns to the containing block or caller as
appropriate. The alternative method of
processing is the resumption model where
control is returned to the containing block

after the exception has been handled. This is
not as common as the termination model and
is not implemented in any ‘mainstream’
language. Furthermore, the resumption
model can be implemented in a number of
flavours – re-execute from the start of the
exception block, re-execute the instruction
which caused the exception or resume
execution at the instruction following the
“faulty” instruction.

Within a program it is possible, and
important, to distinguish between two
different types of exception depending on
their source:

• Environmental – The exception is raised
by an entity (e.g. the run-time system)
outside the current program due to an
event occurring in the environment
within which the program is running, for
example, a floating point error raising the
CONSTRAINT_ERROR exception in an
Ada95 program.

• Application – The exception was defined
within the program code and is raised as a
result of a program action (or inaction).
For example, an exception raised as the
result of a failed application assertion.

In addition, either type of exception can be
synchronous or asynchronous. A
synchronous exception is raised as a direct
result of current program activity, e.g.
resource locked, whereas an asynchronous
exception is not related to the current
program activity though the exception may
have been raised as a result of past activity
or current in-activity. Note that for
application exceptions the asynchrony can
be viewed as the insertion of an arbitrary
delay between the exception being raised
and the subsequently being handled

1.2 Reflective Programming Model

Within this paper we aim to produce a
reflective treatment of exceptions and thus
follow the usual reflective object-oriented

language model [Watanabe and Yonezawa,
1988; Maes, 1987] inorder to develop the
most general result. Within this general
reflective architecture, the structure and
behaviour of an object is controlled by its
metaobject, which itself is controlled by a
meta-metaobject. Unlike many reflective
object-oriented languages, we allow a base-
level object to have multiple metaobjects
each responsible for some aspect of structure
and/or behaviour of the base-level object.

1.3 Motivation

Exception handling can be viewed as
providing error containment for an object
and helps to prevent errors propagation
within the system. The issues related to
exception handling within an object-oriented
context have been considered by a number
of authors, notably [Miller and Tripathi,
1997]. However, we are not aware of any
work that addresses issues related to
reflection and exceptions. In a reflective
system, the metalevel reifies (makes
concrete in terms of actually implementing)
the abstractions used by the base-level. We
thus view exceptions as implementing the
abstraction of fault-free objects/modules
within a system and that using a more
explicit reflective model would enable us to
exploit the further advantages offered by
reflection. These are:

• A strong, disciplined separation of
concerns – Our initial motivation for
this work stemmed from a belief that the
separation of concerns offered by a
reflective treatment of exceptions could
provide a useful extension of their use to
divide functional and error-handling
code. In addition, we want to be able to
support a wider range of features (e.g.
different exception models) than can be
accommodated in a non-reflective
language. A reflective system permits an
effective discipline to be imposed on the
separation since the metalevels can

impose the required restraints on change
within the system.

• Transparency and self-containment –
These refer to the principles that the
base-level is not reliant on the metalevel
for correct functional behaviour and that
the facilities implemented by the
metalevel are transparent to the base-
level. Viewed from the perspective of an
application, facilities reified by the
metalevel are seen as not relevant to the
provision of correct functional operation.
Note that system requirements, e.g. fault
tolerance or security, may well be
implemented at the metalevel. However,
if they are not available the application
will still operate except that it would
execute without the safety net of the
fault-tolerance or security layers
insulating the application from an
unreliable insecure execution
environment.

• Recursive – The metalevel reifies
abstractions used at the base level and
the recursive nature of the reflective
model means that the meta-metalevel
reifies abstractions used at the metalevel.
This principle means that we seek
consistency of programming language
entities at each meta-level.

2 Exceptions and Reflection
This section describes the development of
our first model of reflective exceptions. The
basic principle of operation is that the act of
raising of an exception becomes a reified
operation. After briefly presenting the model
we will discuss why such an approach is not
adequate and show how the basic model can
be changed to enhance the separation
between functional and exceptional code.

2.1 Reifying the raising of an
exception

The first reflective model of exception
handling we shall consider uses a
computational model with two distinct
entities; objects and exception handlers. An
object throws an exception which is
subsequently processed by an exceptions
handler. Reflection is used to reify the act of
raising/throwing the exception; thus when an
exception is raised, a jump to the metaobject
occurs that then handles exception through
the exception handler along with any other
processing undertaken by the metalevel.
This procedure is analogous to the
reification of a method call that causes an
interception of the call to the base-level
object with subsequent processing controlled
by the metaobject.

Metaobject

Baselevel
object B

Exception
handler

Baselevel
object A

å

�

ê
�

�M
E

T
A

LE
V

E
L

B
A

S
E

LE
V

E
L

Metaobject

Figure 1: Exception
handling with reified

exception raise.

Figure 1 illustrates how an exception is
raised and handled within this system. The
flow of control proceeds as follows:

1. Base-level object “A” invokes a method
in “B”. The invocation is trapped by the
metalevel.

2. The metaobject invokes an appropriate
method in the base class in response to
the invocation request from “A”.

3. At some point an exception is raised
which, since this is a reified operation,
causes a jump to metaobject
computation.

4. The metaobject invokes the selected
handler which may access/modify the
state of “B” to resolve the exception.
The handler returns information to the
metaobject indicating the success or
otherwise of the exception handling.

5. The metaobject decides on the fate of the
method invocation request from “A”. In
this example it terminates the original
call at point � (indicated by the line
crossing the invocation arrow).

2.1.1 Exception Propagation

If the exception cannot be processed (e.g.
there is no handler present) then the
metaobject must propagate the exception to
the invoker’s meta-object with possible
subsequent termination of the method
invocation that raised the exception. The call
to the base-level object which actually raised
the exception should be terminated
irrespective of the exception termination
model currently in use – after propagation,
even for the resumption case, the invoker
object is the one to be resumed. This model
is illustrated in Figure 2.

Metaobject

Baselevel
object C

Exception
handler

Baselevel
object B

å

�

ê

�
�

M
E

T
A

LE
V

E
L

B
A

S
E

LE
V

E
L

Metaobject

Baselevel
object A

å

Metaobject

Figure 2: Termination model using reified exception raise.

As in Figure 1, the base-level object “A”
invokes “B” (å) through metaobject ÆB,
but in this example the method at the base-
level then invokes “C” through ÆC (also
labelled å). The method invoked by ÆC in
the base-level object raises an exception (ê)
and the reification of the raise causes
processing to proceed in the metaobject. The
exception handler selected by the metaobject
fails to handle the exception so the method
invocation in the base-level object is
terminated by the metaobject (�) and the
exception propagated to ÆB (�). There is

no handler associated with ÆB and so the
exception is propgated again to ÆA (�) and
the call to “B” terminated. In ÆA there is
also no handler – and nowhere to propagate
to – and so the program must also terminate
with an “Unhandled Exception” error.

The model can readily be adapted to the
non-termination case by a change in
semantics of the metaobject which causes
control to return to base-level object B, at
the point where the call to object C occurred,
after the exception has been handled by the
metaobject. One may also need to change

the behaviour of application object B to retry
the operation perhaps using a replicated
object C. An important advantage over
conventional exception mechanisms is that
the metaobject controls the behaviour and
syntax of the base level. Thus the metalevel
exception handler can modify the base level
(e.g. change the base-level state) before
returning control and thus prevent the
exception being re-raised.

If a handler for a synchronous application
exception does not exist within the
metaobject, the propagation continues at the
metalevel, a process that is illustrated in the
figure above. If no handler is found at the
caller’s metaobject then that method
invocation is also terminated and the
propagation repeated.

2.1.2 Environmental Exceptions

The class of exceptions that can be raised by
entities outside the current program are said
to have an environmental cause. This section
is split into two subsections dealing with
asynchronous and synchronous
environmental exceptions respectively.

2.1.2.1 Asynchronous Environmental
Exceptions

An asynchronous environment exception
(AEE) is raised as a result of an event
external to the program and not as a direct
result of current program activity (though it
may be raised as a result of current program
inactivity). As examples, a run-time system
may raise a garbage “low memory”
exception to cause each object in the system
to release resources or a health monitor may
signal that a patient requires immediate
attention.

Within our model, AEEs are raised
immediately at the metalevel without being
reified entities from the base-level. Since
reflective components may process in
parallel with the base-level components then
there is no fundamental requirement to stop

the base-level from executing its current
task, however, since this is dependent on the
semantics defined at the meta-level this is a
design option. Certain classes of AEE, such
as the garbage collection exception, may
never require the base-level to be halted
whereas others may require interruption and
a subsequent change in the flow of control at
the base-level. Note that even if the model is
such that the base level is interrupted when
an environmental exception occurs, the base
level may subsequently be resumed without
any changes after the exception has been
processed or alternatively, a whole section
of the program may be abandoned.

As an example of how AEEs might interact
with the meta-level, consider a base-level
object that makes a non-blocking attempt to
access a resource (e.g. communication
channel). At the point where the attempt is
made the resource is unavailable and so a
future1 is returned to the base-level. Whilst
the base-level continues processing, the
environment raises an AEE in all meta-level
objects that results in the freeing of the
resource from another object. A further AEE
is raised in the base-level object’s meta-
object which allocates the resource to the
future assigned to the base-level. When the
base-level attempts to access the future it
can use the resource without ever being
aware of meta-programs allocation attempts.

2.1.2.2 Synchronous Environmental
Exceptions

Synchronous environmental exceptions are
exceptions that are raised by the

1 A future is reference to a resource that is returned to
a program by the run-time system when the resource
is not immediately available. It enables the requesting
program to continue to perform work whilst waiting
for the resource to become available. If the future is
sticky then further attempts to access the contents
before the resource is available will cause the
program to block pending allocation otherwise access
attempts result in a further ‘not-available’ indication

environment as a result of current program
activity and so may require handling in
different manner to asynchronous
environmental exceptions.

A synchronous environmental exception is
raised by an external entity as a result of
actions or in-actions taken by the current
program. In this manner we can consider an
environmental exception as a hidden
program assertion in that if the exception is
raised then the assertion can be said to have
failed. Since these exceptions are raised as a
result of evaluating the hidden assertion it is
clear that the exception be raised by the
environment at the base-level and then
treated as a synchronous application
exception (i.e. reified and then handled at
the meta-level). After the exception has been
handled the system will then terminate the
exception block or resumes execution
according to the particular exception model.

2.1.3 Discussion

By the simple act of moving the control of
exception handling to the metalevel confers
a major advantage over a conventional, non-
reflective, model. Significantly, it enables
the metaobject to perform work both pre-
and post- handler execution – for example to
check that an exception handler has
performed correctly and that object
invariants hold after its execution. Such
checks can then be applied to all exceptions
raised in the object providing obvious
advantages of single point of control.

The choice of handler for a particular
exception is made at run-time and can vary
both from object to object and also during
program execution. In addition the action
taken by the metaobject after an exception
has been raised but prior to invoking a
particular handler can vary, for example it
could:

1. Return the exception to the caller
without attempting further processing or

error recovery. This may be useful for
exceptions for which no state restoration
is required in the base-level object or a
fast response is required.

2. Restore the base-level object’s state (e.g.
through roll-back) and attempt re-
invocation of the method. If the
subsequent invocation goes to a different
method then the handler has effectively
implemented an acceptance block.

3. Abandon the method invocation and
delegate subsequent handling of the
invocation that caused the exception to a
replicated instance of the base-level
object whilst, in parallel, restoring the
now faulty primary.

The decision as to which action to pursue
need not be fixed – the metaobject can
examine the system self-representation to
determine the optimal method of exception
handler. This run-time dynamism can extend
to the modification of handler by metalevel
to process new exceptions or existing
exceptions in new ways. The use of run-time
reflection means that change in the system
can occur dynamically at any point,
however, within a reflective system the
disciplined “opening up” of the run-time
system means that the system designer can
constrain change to occur only at specified
points. Restricting the reflection mode to
compile time constrains the degree of
change that can be applied to a system and
thus permits only re-configuration when the
system is built.

Unfortunately, this model does not enable a
simple change from the resumption to
termination exception models since the
application will have been programmed with
certain assumptions in mind. These
assumptions cannot be changed by simply
altering how exceptions are handled – one
must also alter how the exception handler
behaves and how the calling program
behaves. Whilst changing the base-level

program to reflect these changed
assumptions is entirely possible within a
reflective system is constitutes a major cost.

2.1.3.1 Location of Exception handler
Within this system, the exception (i.e. the
point where an exception is raised and the
exception handlers) are located at the base-
level but the exception control is located at
the metalevel. Thus we have only achieved a
limited separation of concerns since both
handlers and functional objects exist at the
same level and only the exception control
has been reified. Also we have been forced
to introduce a new language entity, the
exception handler which further weakens
our aim of developing a fully recursive
model.

Recall that our principle aspiration was to
make the separation of functional code and
error code more explicit, and therefore we
surmise that moving the location of the
exception handler(s) to the metalevel will
enable us to enhance the separation of
concerns. However this leaves open whether
the exception handler should be:

1. Integrated as part of the base-level object
and invoked by the metaobject,

2. Located in separate object at the
metalevel (though not itself a
metaobject) to which exception handling
is delegated by the metaobject,

3. Located as part of the base-level object’s
metaobject,

4. An alternative architecture which does
not use ‘exception handlers’ as they are
commonly known.

The first approach is identical to the one
described above and would therefore suffer
from the same problems regarding lack of
transparency and separation of concerns.
The second is appealing since it is highly
flexible (for example, the destination of the
delegation can be changed at run-time and

thus the system designer easily alter the error
treatment semantics) and enables different
metaobjects to share exception code.
However the third approach is in fact
equally flexible since reflection allows both
the syntax and behaviour of the metaobject
(in this case, the structure and behaviour of
the embedded exception handler) to be
modified through method invocation in the
meta-metalevel.

However, the fourth scheme enables us to
combine the advantages of separate handlers
without introducing new language entities
through the use of an alternative exception
architecture where the exception itself is
reified and responsible for its own handling.
We thus consider this to be the most
promising and is the subject of the next
section.

2.2 Reifying Exceptions

The previous section considered how to map
the common exception models into a
reflective framework through the reification
of the raising of the exception. As a result,
the clear separation of functional and
exceptional code was compromised with a
mixing of responsibilities between base and
metalevels. This section explores the use of
an alternative architecture where the
exception itself controls the handling and
will enable the metaobject to modify the
exception prior to handling or propagation.
We will show how this architecture
produces a more disciplined separation
without introducing any new entities into the
computational model.

First consider that an exception is an object
(as in, for example, C++) with the extension
that this object is reified and therefore has a
associated metaobject. Thus when an
exception object is created, a jump to
metalevel processing will occur. This is in
contrast to the previous discussion where the
act of raising the exception was reified and
therefore caused the jump to metalevel

processing. We shall term the metaobject
associated with each exception object when
it is created (that is raised) the
metaexception object.

The role of the exception object is not only
to provide the link to the metalevel but also
to maintain state about the exception which
is not part of the base-level object’s state.
Note that the latter may well be
replaced/modified by exception handler and
thus we need a place to retain information
during the exception handling.

Within this model we view the base-level’s
computation as follows; the point where an
exception can be raised is considered to be a
program assertion which will be true when
executed. If the assertion fails, i.e. is false,
then the reification process causes the
metalevel to take whatever action is required
to make the assertion evaluate to true. From
the applications viewpoint the assertions are
always true. This approach maintains the
transparency requirement – if the base-level
is running without metalevel support then it
will continue as long as assertions are true
and will simply not benefit from corrective
actions.

Metaobject

Baselevel
object

meta-
exception

object

Exception
handler

assertion/
exception

object

M
E

T
A

LE
V

E
L

B
A

S
E

LE
V

E
L

Figure 3: Object diagram
for the raising of a reified

exception.

The metaexception object operates in
exactly the same way as any reified
metalevel entity in that it controls both the
structure and behaviour of the exception at
the base level. When an exception is raised,
an exception object is instantiated with an
appropriate metaexception object. The
metaobject is then responsible for managing
exception resolution or propagation. This
process is illustrated in Figure 4.

Metaobject

Baselevel
object B

meta-
exception

object

Exception
handler

exception
object raise/

creates

Metaobject

Baselevel
object A

Exception
handler

å

�

ê

�

�

ñ

�M
E

T
A

LE
V

E
L

B
A

S
E

LE
V

E
L

Figure 4: Exception handling and propagation with reified exceptions

Figure 4 shows a complete flow of control
for reified exception handling using the
termination model. The six stages are as
follows:

1. Base level object A invokes a method in
object B. The message receipt is
intercepted by the metaobject.

2. The metaobject invokes the requisite
method script.

3. An assertion fails and an exception
object is created. The executing method
script blocks. The exception object
creation is reified and so control passes
to the metalevel metaexception object.

4. The metaexception object controls the
semantics of exception handling. In this
case it invokes routines in a handler in
the metaobject. The handler(s) at the
metalevel have full access to the state of
the baselevel object through the
reflective self-representation and so can
attempt to rectify the cause the of the
exception before returning control. The
metaexception object has access to any
state stored in the exception object. Note
that since the metaobject can execute in
parallel with the base level object it can
continue to process information even
though the latter is blocked after creating
the exception object.

After an exception has been successfully
handled control is returned to the object
that created the exception object. Since
the metalevel will have altered the object
state to resolve the problem continued
execution will not immediately result in
repetition of the error.

5. However, in this case the exception
cannot be processed and the handler
returns a failure message to the
metaexception object along with a
reference to the invoking
object/metaobject pair. Simultaneously,

the ongoing method call is terminated by
the metaobject.

6. The metaexception object repeats the
attempt to handle the exception with the
handler(s) at the onvoking metaobject.
If, after all possible propagation attempts
have occurred the exception remains
unprocessed then the metaexception
object is responsible for handling and
may terminate the program.

This change enables us to take the model
described in previous sections and extend it
by allowing the exception to control its
future. For example, a system could be
created in which raised exceptions are by
default bound to a metaexception object that
implemented the termination model.
However, at run-time when an exception is
raised it may prove possible to successfully
handle of the cause of the exception (e.g. re-
issue a prompt to receive further input from
the user) and thus the metalevel exception
handler could invoke methods in the
metaexception object to change the
semantics to implement the resumption
model. Should the system designer wish to
prohibit such change for a particular
exception or class of exceptions then it is a
simple matter of binding to a different
metaobject which will not accept such
invocations and so does not permit the
semantics to change.

The metaexception object is responsible for
the controlling the handling of the exception
object either through delegation to a separate
handler (e.g. one located in the metaobject
as in the figures above) or through its own
methods if no handler can be found.

2.2.1 Discussion

The approach of reifying exceptions
provides the full and complete separation of
concerns that we were seeking. It is also a
very flexible model – one can change the
exception handling semantics at run-time

and this can be on a per-exception basis so
that different exceptions raised by the same
object can have different semantics. The
desired separation of concerns arises
because both exceptional and functional
code are completely orthogonal – the latter
exists at the base-level where as the
exception code exists at the metalevel and
manipulates the reflective self-representation
of the base-level.

This approach has the advantage of
introducing no new language or conceptual
entities into the system since exceptions are
base level objects whose semantics are
handled by meta-level entities. The handlers
for exceptions are simply methods of the
metalevel object which are manipulated by
the meta-metalevel to change either the
semantics of how exceptions are handled
(e.g. termination or resumption) or to change
the actions necessary to recover from an
exceptional state. Such a high degree of run-
time flexibility is necessary since we want
the model to be able to handle exceptions for
any methods which are created at run-time
and thus we need to be able to insert new
handlers or modify existing ones on the fly.

From a metalevel viewpoint, one can view
exception handlers as minimal recovery
blocks – simple sections of code to restore
the state of an object to a valid state – and
that the metalevel then decides what action
to take; invoke a replica, repeat the
operations etc. Such a system would then
produce an exception model similar to that
in Eiffel [Meyer, 1992] for exceptions raised
as a result of a failed pre- or post-condition.
In Eiffel, after an exception handler has
restored the state of an object it can redirect
the exception using a “retry” statement.

The model as described is, of course, fully
recursive in that exceptions created at the
meta-level will have meta-meta-level objects
that control their semantics. Thus it fits with
the recursive reflective computational
model. It is also transparent – the base-level

program will proceed (in the absence of
errors) in the same fashion with or without
the metalevel.

Another significant advantage is that, unlike
the previous model, the reification of the
exceptions itself makes possible the
handling of exceptions raised as a result
invocations where the caller is a non-reified
object (i.e. it does not have a metaobject).
With the previous model we needed to make
these a special case since no metaobject was
available to continue the propagation.
However, the actions in this model are
controlled by the metaexception object
which can unwind the call chain through
both objects and metaobjects until a suitable
handler is found.

We retain the benefit of multiple exception
handlers (since the metaexception object can
invoke any present handler in the
metaobject) and also promote the re-use of
handlers. Handlers can be re-used (that is
imported from other metaobjects) by the
meta-level and this is of particular
significance where we have a hierarchy of
exceptions since the handler will may only
need to be written once and automatically
imported as the “default” handler by the
metalevel without further intervention by the
system designer.

3 Concurrency

3.1 The Concurrency Model

We have adopted a concurrency model
based around active objects as we feel that
such a scheme has both practical
applications as well as fitting naturally
within a reflective framework. Each active
object possesses one or more embedded
threads that are created when the object is
created and execute independently.
Consequently, all objects within a system
(whether active or passive) are multi-
threaded and thus require synchronisation to
constrain access to shared data. Similar

models have been adopted by a number of
concurrent object-oriented languages, for
example, TAO [Mitchell and Wellings,
1996; Mitchell, 1995].

The model of reflective object-oriented
system permits objects to have multiple
metaobejcts and to delegate aspects of the
control of their behaviour or state to
different metaobjects. We use distinct
metaobjects to separate the metacontrol of
concurrency from the normal metacontrol of
an object into a metatask object. This object
controls the behaviour of the thread
embedded in the base-level object and is
also responsible for initiating thread
execution and implementing context
switches.

In keeping with the design of the base-level
object that contains an embedded thread to
form the active object, the controlling
metatask object is embedded within the
relevant metaobject. This model is
illustrated in Figure 5 shows a single base-
level and metalevel object pair with arrows
showing the actions of the metatask, namely,
the initial start of thread execution, one or
more context switches and finally the thread
termination.

Metaobject Metatask

Baselevel
object

M
E

T
A

LE
V

E
L

B
A

S
E

LE
V

E
L

Figure 5: Illustration of the
concurrency model of objects with

embedded threads and
metaobjects with embedded

metatasks. The metatask controls
thread creation, context switch

and termination.

The above model is derived from the
concurrency model used in TAO, however,
in adopting this model we do not intend to
limit the applicability of our work and
consider that our results can be usefully used
with a wide range of concurrency models.
For example the Ada95 model has a “task”
construct which is separate from objects and
in such a case metaobjects and metatasks
would also be separate entities rather than
embedded within the same object.

3.2 Reflective Exceptions and
Concurrency

Within a concurrent computational model
which uses either an active object model or a
task based model, the threads can operate
independently of any ongoing method calls.
Thus it is not necessary to terminate
embedded threads when an exception cannot
be handled within the metaobject. However,
the exception handler at the metalevel will
need to co-operate with the metatask when
an exception is raised by a base-level task.

When a base-level tasks raises an exception,
an attempt must be made, as described
above, to handle it within the metaobject.
Should this exception handling be
successful, the task may be able to resume or
it may be necessary for the metaobject to
cause the metatask to recreate the task (if the
raising of the exception had caused it to be
terminated) or to cause a context switch to
resume the task (resumption model) at the
appropriate point.

However, perhaps the more interesting case
occurs when the metalevel cannot handle the
exception. In this case the task must be
terminated – again through cooperation with
the metatask object. Embedded threads
within an active object are created along
with the active object and thus are directly to
analogous to the main thread of control in
many programming languages.
Consequently there is no sensible place to
propagate the exception to, and like a main

program, the active object must now be
considered fatally flawed and terminated. It
passing is marked, however, by an
asynchronous application exception being
raised in the object which created the active
object which will allow it to take appropriate
action to correct the error (re-create the
object perhaps trying a different
implementation to avoid repetition of the
exception). Note that due to the autonomous
operation of parent and child active objects,
the parent active object may no longer exist
in which case we need to raise the
“notification of termination” exception
within the grandparent object and thus
require a run-time system which tracks task
creation hierarchies.

4 Summary and Evaluation
This paper has explored how the
implementation of both synchronous and
asynchronous environmental and application
exceptions can be programmed at the
metalevel. This section presents an overall
evaluation of the advantages of a reflective
approach to exceptions and also a final
summary and suggestion for future work.
Note that many of the points discussed in
this evaluation apply to either of the
reflective models discussed in this paper.

The foremost advantage is that the reflective
exception mechanism is extremely flexible
and adaptive. In [Miller and Tripathi, 1997]
the authors devise three categories of
evolution of exception; Exception evolution
(raising new exceptions derived from ones
already in the interface), Function evolution
(raising entirely new exceptions not
currently in the interface) and mechanism
evolution (a change in implementation
leading to exception overloading). A
reflective system is ideal suited to
overcoming these problems due to its in-
built mechanisms for introspection and
modification which means that new handlers
can be added, the semantics of existing ones

altered or split into several different
handlers.

Within our system, the flexibility arises
because the metalevel exception handler has
its syntax and semantics defined at the meta-
metalevel. This means the designer of the
system can control the changes permitted at
run-time and thus produce anything from a
static system fixed at compile time to a fully
flexible, but inherently less predictable
system, that can be changed at will to reflect
the current environment the program finds
itself in. A reflective treatment of exceptions
also produces a very adaptable system since
the specification of the semantics of the
exception handling is separated from the
handler itself. The system described in this
paper can covers both the termination and
non-termination models for both
synchronous and asynchronous exceptions
whether application or environmentally
sourced. The semantics of exception are not
necessarily fixed according to the whims of
the programming language, designers are
free to adapted to suit the needs of a
particular program.

This flexibility and adaptability means that
different components of a system can have
different approaches to how exceptions are
handled and can potentially swap amongst
them at run-time. If such freedom is
undesirable since it would lead to a too
unpredictable system, the designer is able to
control the degree of change allowed by
appropriate programming of the meta-levels.
Furthermore, by reifying exceptions, rather
than the raising of the exception, one can
permit more localised control over the future
course of the exception and also change the
semantics of exception handling whilst it is
being processed. The reified exception
model is highly expressive as illustrated by
the fact that we can easily implement a wide
range of exception models including those in
the mainstream languages C++, Ada 95 and
Eiffel. The model is also highly flexible in

that the metalevel program that handles the
exception can manipulate the behaviour of
the base-level program. Using this
mechanism the reflective layer can modify
the base level after an exception has
occurred to prevent it being re-raised – for
example, by forcing the base-level program
down a different branch in an acceptance
block.

Finally, a reflective treatment of exceptions
has achieved our primary goal of further
enforcing a clear separation of concerns –
there is no mixing of the exception handlers
in with normal “functional” program code.
This paper has shown that even a simple
reflective approach where exception control
occurs at the metalevel confers a number of
advantages. However, we have also shown
that extending this model so that both
exception control and handling occurs at the
metalevel and that the base-level simply
views exceptions as assertions can simplify
programs through ensuring a strong,
disciplined, separation of functional and
exceptional concerns.

4.1 Acknowledgements

This work has been done as part of the
Design for Validation (DeVa) project,
ESPRIT long-term research project 20072.
We would like to acknowledge the
contributions that other members of the
DeVa project have made towards this work,
especially for the comments on the work
during its various stages of preparation.
Special thanks must go to Dr. A.
Romanovsky for the many discussions on
exceptions and to Dr. R. J. Stroud for the
helpful insights into the principles of
reflection.

5 References

[Burns and Wellings, 1996] A. Burns and
A. Wellings, Real-Time Systems and

Programming Languages, Second ed:
Addison-Wesley, 1996.

[Intermetrics, 1995] Intermetrics, “Ada
Reference Manual,” ISO/IEC 8652:1995,
1995.

[Stroustrup, 1997] B. Stroustrup, The C++
Programming Language, Third ed:
Addison-Wesley, 1997.

[Watanabe and Yonezawa, 1988] T.
Watanabe and A. Yonezawa, “Reflection in
an Object-Oriented Concurrent Language,”
ACM SIGPLAN Notices - Proceedings of
OOPSLA’88, (23)11, pp. 306-315, 1988.

[Maes, 1987] P. Maes, “Concepts and
Experiments in Computational Reflection,”
ACM SIGPLAN Notices - Proceedings of
OOPSLA’87, (22)12, pp. 147-155, 1987.

[Miller and Tripathi, 1997] R. Miller and A.
Tripathi, “Issues with Exception Handling in
Object-Oriented Systems,” in Proceedings
of ECOOP’97, vol. LNCS-1241, M. Askit
and S. Matsuoka, Eds. Jyväskylä, Finland:
Springer-Verlag, 1997, pp. 85-103.

[Meyer, 1992] B. Meyer, Eiffel: The
Language: Prentice Hall, 1992.

[Mitchell and Wellings, 1996] S. E.
Mitchell and A. J. Wellings,
“Synchronisation, Concurrent Object-
Oriented Programming and the Inheritance
Anomaly,” Computer Languages, (22)1, pp.
15-26, 1996.

[Mitchell, 1995] S. E. Mitchell, "TAO - A
Model for the Integration of Concurrency
and Synchronisation in Object-Oriented
Programming", PhD Thesis, Department of
Computer Science, University of York, UK,
YCST-95-009, available through FTP from
"ftp://ftp.cs.york.ac.uk/reports", 1995.

